Skip to main content

Investigating Plasmodesmata Function in Arabidopsis Thaliana Using a Low-Pressure Bombardment System and GFP Movement Assay

  • Protocol
  • First Online:
Plasmodesmata

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2457))

Abstract

Plasmodesmata are nanopores in the plant cell wall that allow direct cell-to-cell communication. They are key for plant growth, development, and defense. However, studying these pores is challenging due to their small size, with diameters of 30–50 nm and lengths that match cell wall thickness. One particular challenge is measuring how much cell-to-cell trafficking is facilitated by the plasmodesmata in a tissue or between particular cells. Here, we present an approach for studying plasmodesmata-mediated trafficking in the model plant Arabidopsis thaliana by using an easy-to-build and affordable low-pressure particle bombardment apparatus. Using low-pressure particle bombardment at around 60 psi, we are able to transform individual cells in the leaf epidermis and study by confocal fluorescence microscopy the subsequent cell-to-cell trafficking of the diffusible molecule green fluorescent protein (GFP). The technique and equipment could be used by any plant biologist to measure intercellular trafficking through plasmodesmata under varying growth conditions including exposure to different stresses, light conditions, chemical treatments, or in various mutant backgrounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schonknecht G, Brown JE, Verchot-Lubicz J (2008) Plasmodesmata transport of GFP alone or fused to potato virus X TGBp1 is diffusion driven. Protoplasma 232:143–152

    Article  CAS  Google Scholar 

  2. Liarzi O, Epel BL (2005) Development of a quantitative tool for measuring changes in the coefficient of conductivity of plasmodesmata induced by developmental, biotic, and abiotic signals. Protoplasma 225:67–76. https://doi.org/10.1007/s00709-004-0079-x

    Article  CAS  PubMed  Google Scholar 

  3. Daum G, Medzihradszky A, Suzaki T, Lohmann JU (2014) A mechanistic framework for noncell autonomous stem cell induction in Arabidopsis. Proc Natl Acad Sci U S A 111:14619–14624. https://doi.org/10.1073/pnas.1406446111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Stadler R, Wright KM, Lauterbach C, Amon G, Gahrtz M, Feuerstein A, Oparka KJ, Sauer N (2005) Expression of GFP-fusions in Arabidopsis companion cells reveals non-specific protein trafficking into sieve elements and identifies a novel post-phloem domain in roots. Plant J 41:319–331. https://doi.org/10.1111/j.1365-313X.2004.02298.x

    Article  CAS  PubMed  Google Scholar 

  5. Kragler F (2015) Analysis of the conductivity of plasmodesmata by microinjection. Methods Mol Biol 1217:173–184. https://doi.org/10.1007/978-1-4939-1523-1_12

    Article  CAS  PubMed  Google Scholar 

  6. Lucas WJ, Bouche-Pillon S, Jackson DP, Nguyen L, Baker L, Ding B, Hake S (1995) Selective trafficking of KNOTTED1 homeodomain protein and its mRNA through plasmodesmata. Science 270:1980–1983

    Article  CAS  Google Scholar 

  7. Storms MMH, van der Schoot C, Prins M, Kormelink R, van Lent JW, Goldbach RW (1998) A comparison of two methods of microinjection for assessing altered plasmodesmal gating in tissues expressing viral movement proteins. Plant J 13:131–140

    Article  CAS  Google Scholar 

  8. Cui W, Wang X, Lee JY (2015) Drop-ANd-See: a simple, real-time, and noninvasive technique for assaying plasmodesmal permeability. Methods Mol Biol 1217:149–156. https://doi.org/10.1007/978-1-4939-1523-1_10

    Article  PubMed  Google Scholar 

  9. Wright KM, Oparka KJ (1996) The fluorescent probe HPTS as a phloem-mobile, symplastic tracer: an evaluation using confocal laser scanning microscopy. J Exp Bot 47:439–445

    Article  CAS  Google Scholar 

  10. Ross-Elliott TJ, Jensen KH, Haaning KS, Wager BM, Knoblauch J, Howell AH, Mullendore DL, Monteith AG, Paultre D, Yan D, Otero S, Bourdon M, Sager R, Lee JY, Helariutta Y, Knoblauch M, Oparka KJ (2017) Phloem unloading in Arabidopsis roots is convective and regulated by the phloem-pole pericycle. eLife 6:e4125. https://doi.org/10.7554/eLife.24125

    Article  Google Scholar 

  11. Peron T, Candat A, Montiel G, Veronesi C, Macherel D, Delavault P, Simier P (2016) New insights into phloem unloading and expression of sucrose transporters in vegetative sinks of the parasitic plant Phelipanche ramosa L. (Pomel). Front. Plant Sci 7:2048. https://doi.org/10.3389/fpls.2016.02048

    Article  Google Scholar 

  12. Fitzgibbon J, Beck M, Zhou J, Faulkner C, Robatzek S, Oparka K (2013) A developmental framework for complex plasmodesmata formation revealed by large-scale imaging of the Arabidopsis leaf epidermis. Plant Cell 25:57–70. https://doi.org/10.1105/tpc.112.105890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Burch-Smith TM, Zambryski PC (2010) Loss of increased size exclusion limit (ISE)1 or ISE2 increases the formation of secondary plasmodesmata. Curr Biol 20:989–993. https://doi.org/10.1016/j.cub.2010.03.064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bobik K, Fernandez JC, Hardin SR, Ernest B, Ganusova EE, Staton ME, Burch-Smith TM (2019) The essential chloroplast ribosomal protein uL15c interacts with the chloroplast RNA helicase ISE2 and affects intercellular trafficking through plasmodesmata. New Phytol 221:850–865. https://doi.org/10.1111/nph.15427

    Article  CAS  PubMed  Google Scholar 

  15. Brunkard JO, Xu M, Scarpin MR, Chatterjee S, Shemyakina EA, Goodman HM, Zambryski P (2020) TOR dynamically regulates plant cell-cell transport. Proc Natl Acad Sci U S A 117:5049–5058. https://doi.org/10.1073/pnas.1919196117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ganusova EE, Reagan BC, Fernandez JC, Azim MF, Sankoh AF, Freeman KM, McCray TN, Patterson K, Kim C, Burch-Smith TM (2020) Chloroplast-to-nucleus retrograde signalling controls intercellular trafficking via plasmodesmata formation. Philos Trans R Soc Lond Ser B Biol Sci 375:20190408. https://doi.org/10.1098/rstb.2019.0408

    Article  CAS  Google Scholar 

  17. Brunkard JO, Burch-Smith TM, Runkel AM, Zambryski P (2015) Investigating plasmodesmata genetics with virus-induced gene silencing and an agrobacterium-mediated GFP movement assay. Methods Mol Biol 1217:185–198. https://doi.org/10.1007/978-1-4939-1523-1_13

    Article  CAS  PubMed  Google Scholar 

  18. Brunkard JO, Zambryski P (2019) Plant cell-cell transport via plasmodesmata is regulated by light and the circadian clock. Plant Physiol 181:1459–1467. https://doi.org/10.1104/pp.19.00460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Oparka KJ, Prior DAM (1992) Direct evidence for pressure-generated closure of plasmodesmata. Plant J 2:741–750

    Article  Google Scholar 

  20. Crawford KM, Zambryski PC (2000) Subcellular localization determines the availability of non-targeted proteins to plasmodesmatal transport. Curr Biol 10:1032–1040

    Article  CAS  Google Scholar 

  21. Stonebloom S, Brunkard JO, Cheung AC, Jiang K, Feldman L, Zambryski P (2012) Redox states of plastids and mitochondria differentially regulate intercellular transport via plasmodesmata. Plant Physiol 158:190–199. https://doi.org/10.1104/pp.111.186130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682. https://doi.org/10.1038/nmeth.2019

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank George Butler, an undergraduate researcher in the lab, for excellent technical assistance. The Staff of the Biological Service Facility at the University of Tennessee, Knoxville, are acknowledged for assembling the bombardment apparatus and providing technical details for this article. Research reported in this publication was supported by the National Institute of General Medical Sciences of the National Institutes of Health under Award Number F31GM131671. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. Additional support was from the National Science Foundation through grant MCB 1846245.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tessa M. Burch-Smith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Fernandez, J.C., Burch-Smith, T.M. (2022). Investigating Plasmodesmata Function in Arabidopsis Thaliana Using a Low-Pressure Bombardment System and GFP Movement Assay. In: Benitez-Alfonso, Y., Heinlein, M. (eds) Plasmodesmata. Methods in Molecular Biology, vol 2457. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2132-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2132-5_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2131-8

  • Online ISBN: 978-1-0716-2132-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics