Skip to main content

Plasmodesmata Structural Components and Their Role in Signaling and Plant Development

  • Protocol
  • First Online:
Plasmodesmata

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2457))

Abstract

Plasmodesmata are plant intercellular channels that mediate the transport of small and large molecules including RNAs and transcription factors (TFs) that regulate plant development. In this review, we present current research on plasmodesmata form and function and discuss the main regulatory pathways. We show the progress made in the development of approaches and tools to dissect the plasmodesmata proteome in diverse plant species and discuss future perspectives and challenges in this field of research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu J, Moore S, Chen C, Lindsey K (2017) Crosstalk complexities between auxin, cytokinin, and ethylene in Arabidopsis root development: from experiments to systems modeling, and back again. Mol Plant 10:1480–1496

    CAS  PubMed  Google Scholar 

  2. Aldon D, Mbengue M, Mazars C, Galaud J-P (2018) Calcium signalling in plant biotic interactions. Int J Mol Sci 19:665

    PubMed Central  Google Scholar 

  3. Chen K, Li GJ, Bressan RA, Song CP, Zhu JK, Zhao Y (2020) Abscisic acid dynamics, signaling, and functions in plants. J Integr Plant Biol 62(1):25–54

    CAS  PubMed  Google Scholar 

  4. Zandalinas SI, Fichman Y, Devireddy AR, Sengupta S, Azad RK, Mittler R (2020) Systemic signaling during abiotic stress combination in plants. Proc Natl Acad Sci U S A 117(24):13810–13820

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Amsbury S, Kirk P, Benitez-Alfonso Y (2018) Emerging models on the regulation of intercellular transport by plasmodesmata-associated callose. J Exp Bot 69(1):105–115. https://doi.org/10.1093/jxb/erx337

    Article  CAS  Google Scholar 

  6. Li ZP, Paterlini A, Glavier M, Bayer EM (2021) Intercellular trafficking via plasmodesmata: molecular layers of complexity. Cell Mol Life Sci 78(3):799–816. https://doi.org/10.1007/s00018-020-03622-8

    Article  CAS  PubMed  Google Scholar 

  7. Goodwin P (1983) Molecular size limit for movement in the symplast of the Elodea leaf. Planta 157(2):124–130

    CAS  PubMed  Google Scholar 

  8. Oparka KJ, Roberts AG, Boevink P, Santa Cruz S, Roberts I, Pradel KS, Imlau A, Kotlizky G, Sauer N, Epel B (1999) Simple, but not branched, plasmodesmata allow the nonspecific trafficking of proteins in developing tobacco leaves. Cell 97(6):743–754

    CAS  PubMed  Google Scholar 

  9. Itaya A, Ma F, Qi Y, Matsuda Y, Zhu Y, Liang G, Ding B (2002) Plasmodesma-mediated selective protein traffic between symplasmically isolated cells probed by a viral movement protein. Plant Cell 14(9):2071–2083

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Benitez-Alfonso Y, Cilia M, Roman AS, Thomas C, Maule A, Hearn S, Jackson D (2009) Control of Arabidopsis meristem development by thioredoxin-dependent regulation of intercellular transport. Proc Natl Acad Sci U S A 106(9):3615–3620. https://doi.org/10.1073/pnas.0808717106

    Article  PubMed  PubMed Central  Google Scholar 

  11. Burch-Smith TM, Zambryski PC (2010) Loss of INCREASED SIZE EXCLUSION LIMIT (ISE)1 or ISE2 increases the formation of secondary plasmodesmata. Curr Biol 20(11):989–993. https://doi.org/10.1016/j.cub.2010.03.064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gerlitz N, Gerum R, Sauer N, Stadler R (2018) Photoinducible DRONPA-s: a new tool for investigating cell-cell connectivity. Plant J 94(5):751–766. https://doi.org/10.1111/tpj.13918

    Article  CAS  PubMed  Google Scholar 

  13. Hawes C, Juniper B, Horne J (1981) Low and high voltage electron microscopy of mitosis and cytokinesis in maize roots. Planta 152(5):397–407

    CAS  PubMed  Google Scholar 

  14. Hepler P (1982) Endoplasmic reticulum in the formation of the cell plate and plasmodesmata. Protoplasma 111(2):121–133

    Google Scholar 

  15. Kollmann R, Glockmann C (1991) Studies on graft unions. Protoplasma 165(1–3):71–85

    Google Scholar 

  16. Fischer K, Lachner LA-M, Olsen S, Mulisch M, Krause K (2021) The enigma of interspecific plasmodesmata: insight from parasitic plants. Front Plant Sci 12:641924

    PubMed  PubMed Central  Google Scholar 

  17. Ehlers K, Kollmann R (2001) Primary and secondary plasmodesmata: structure, origin, and functioning. Protoplasma 216(1):1–30

    CAS  PubMed  Google Scholar 

  18. Burch-Smith TM, Stonebloom S, Xu M, Zambryski PC (2011) Plasmodesmata during development: re-examination of the importance of primary, secondary, and branched plasmodesmata structure versus function. Protoplasma 248(1):61–74

    CAS  PubMed  Google Scholar 

  19. Faulkner C, Akman OE, Bell K, Jeffree C, Oparka K (2008) Peeking into pit fields: a multiple twinning model of secondary plasmodesmata formation in tobacco. Plant Cell 20(6):1504–1518

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Ross-Elliott TJ, Jensen KH, Haaning KS, Wager BM, Knoblauch J, Howell AH, Mullendore DL, Monteith AG, Paultre D, Yan D, Otero S, Bourdon M, Sager R, Lee JY, Helariutta Y, Knoblauch M, Oparka KJ (2017) Phloem unloading in Arabidopsis roots is convective and regulated by the phloem-pole pericycle. eLife 6:e24125. https://doi.org/10.7554/elife.24125

    Article  PubMed  PubMed Central  Google Scholar 

  21. Nicolas WJ, Grison MS, Trépout S, Gaston A, Fouché M, Cordelières FP, Oparka K, Tilsner J, Brocard L, Bayer EM (2017) Architecture and permeability of post-cytokinesis plasmodesmata lacking cytoplasmic sleeves. Nat Plants 3(7):1–11

    Google Scholar 

  22. Grison MS, Brocard L, Fouillen L, Nicolas W, Wewer V, Dormann P, Nacir H, Benitez-Alfonso Y, Claverol S, Germain V, Boutte Y, Mongrand S, Bayer EM (2015) Specific membrane lipid composition is important for plasmodesmata function in Arabidopsis. Plant Cell 27(4):1228–1250. https://doi.org/10.1105/tpc.114.135731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Harayama T, Riezman H (2018) Understanding the diversity of membrane lipid composition. Nat Rev Mol Cell Biol 19(5):281

    CAS  PubMed  Google Scholar 

  24. Wang F, Muto A, Van de Velde J, Neyt P, Himanen K, Vandepoele K, Van Lijsebettens M (2015) Functional analysis of Arabidopsis TETRASPANIN gene family in plant growth and development. Plant Physiol 169(3):2200–2214

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Huang D, Sun Y, Ma Z, Ke M, Cui Y, Chen Z, Chen C, Ji C, Tran TM, Yang L, Lam SM, Han Y, Shu G, Friml J, Miao Y, Jiang L, Chen X (2019) Salicylic acid-mediated plasmodesmal closure via Remorin-dependent lipid organization. Proc Natl Acad Sci U S A 116(42):21274–21284. https://doi.org/10.1073/pnas.1911892116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wei Z, Tan S, Liu T, Wu Y, Lei J-G, Chen Z, Friml J, Xue H-W, Liao K (2020) Plasmodesmata-like intercellular connections by plant remorin in animal cells. bioRxiv:791137. https://doi.org/10.1101/791137

  27. Knox K, Wang P, Kriechbaumer V, Tilsner J, Frigerio L, Sparkes I, Hawes C, Karl JO (2015) Putting the squeeze on PDs-a role for RETICULONS in primary plasmodesmata formation. Plant Physiol 168(4):1563–1572

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu DY, Smith PM, Barton DA, Day DA, Overall RL (2017) Characterisation of Arabidopsis calnexin 1 and calnexin 2 in the endoplasmic reticulum and at plasmodesmata. Protoplasma 254(1):125–136

    CAS  PubMed  Google Scholar 

  29. Brault ML, Petit JD, Immel F, Nicolas WJ, Glavier M, Brocard L, Gaston A, Fouché M, Hawkins TJ, Crowet JM, Grison MS, Germain V, Rocher M, Kraner M, Alva V, Claverol S, Paterlini A, Helariutta Y, Deleu M, Lins L, Tilsner J, Bayer EM (2019) Multiple C2 domains and transmembrane region proteins (MCTPs) tether membranes at plasmodesmata. EMBO Rep 20(8):e47182. https://doi.org/10.15252/embr.201847182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ishikawa K, Tamura K, Fukao Y, Shimada T (2020) Structural and functional relationships between plasmodesmata and plant endoplasmic reticulum–plasma membrane contact sites consisting of three synaptotagmins. New Phytol 226(3):798–808. https://doi.org/10.1111/nph.16391

    Article  CAS  PubMed  Google Scholar 

  31. Tilsner J, Amari K, Torrance L (2011) Plasmodesmata viewed as specialised membrane adhesion sites. Protoplasma 248(1):39–60

    CAS  PubMed  Google Scholar 

  32. Diao M, Ren S, Wang Q, Qian L, Shen J, Liu Y, Huang S (2018) Arabidopsis formin 2 regulates cell-to-cell trafficking by capping and stabilizing actin filaments at plasmodesmata. elife 7:e36316

    PubMed  PubMed Central  Google Scholar 

  33. Barton DA, Cole L, Collings DA, Liu DY, Smith PM, Day DA, Overall RL (2011) Cell-to-cell transport via the lumen of the endoplasmic reticulum. Plant J 66(5):806–817

    CAS  PubMed  Google Scholar 

  34. Deinum EE, Mulder BM, Benitez-Alfonso Y (2019) From plasmodesma geometry to effective symplasmic permeability through biophysical modelling. eLife 8:e49000. https://doi.org/10.7554/elife.49000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Park K, Knoblauch J, Oparka K, Jensen KH (2019) Controlling intercellular flow through mechanosensitive plasmodesmata nanopores. Nat Commun 10(1):3564. https://doi.org/10.1038/s41467-019-11201-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Knox JP, Benitez-Alfonso Y (2014) Roles and regulation of plant cell walls surrounding plasmodesmata. Curr Opin Plant Biol 22:93–100

    CAS  PubMed  Google Scholar 

  37. Benitez-Alfonso Y, Faulkner C, Pendle A, Miyashima S, Helariutta Y, Maule A (2013) Symplastic intercellular connectivity regulates lateral root patterning. Dev Cell 26(2):136–147. https://doi.org/10.1016/j.devcel.2013.06.010

    Article  CAS  PubMed  Google Scholar 

  38. Vatén A, Dettmer J, Wu S, Stierhof Y-D, Miyashima S, Yadav SR, Roberts CJ, Campilho A, Bulone V, Lichtenberger R (2011) Callose biosynthesis regulates symplastic trafficking during root development. Dev Cell 21(6):1144–1155

    PubMed  Google Scholar 

  39. Saatian B, Austin RS, Tian G, Chen C, Nguyen V, Kohalmi SE, Geelen D, Cui Y (2018) Analysis of a novel mutant allele of GSL8 reveals its key roles in cytokinesis and symplastic trafficking in Arabidopsis. BMC Plant Biol 18(1):295. https://doi.org/10.1186/s12870-018-1515-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Abou-Saleh RH, Hernandez-Gomez MC, Amsbury S, Paniagua C, Bourdon M, Miyashima S, Helariutta Y, Fuller M, Budtova T, Connell SD (2018) Interactions between callose and cellulose revealed through the analysis of biopolymer mixtures. Nat Commun 9(1):453841

    Google Scholar 

  41. Willats WG, McCartney L, Mackie W, Knox JP (2001) Pectin: cell biology and prospects for functional analysis. Plant Mol Biol 47(1):9–27

    CAS  PubMed  Google Scholar 

  42. Clausen MH, Willats WG, Knox JP (2003) Synthetic methyl hexagalacturonate hapten inhibitors of anti-homogalacturonan monoclonal antibodies LM7, JIM5 and JIM7. Carbohydr Res 338(17):1797–1800

    CAS  PubMed  Google Scholar 

  43. Giovane A, Servillo L, Balestrieri C, Raiola A, D’avino R, Tamburrini M, Ciardiello M, Camardella L (2004) Pectin methylesterase inhibitor. Biochim Biophys Acta 1696(2):245–252

    CAS  PubMed  Google Scholar 

  44. Jarvis MC (1984) Structure and properties of pectin gels in plant cell walls. Plant Cell Environ 7(3):153–164

    CAS  Google Scholar 

  45. Casero P, Knox J (1995) The monoclonal antibody JIM5 indicates patterns of pectin deposition in relation to pit fields at the plasma-membrane-face of tomato pericarp cell walls. Protoplasma 188(1–2):133–137

    CAS  Google Scholar 

  46. Orfila C, Knox JP (2000) Spatial regulation of pectic polysaccharides in relation to pit fields in cell walls of tomato fruit pericarp. Plant Physiol 122(3):775–782. https://doi.org/10.1104/pp.122.3.775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Roy S, Watada AE, Wergin WP (1997) Characterization of the cell wall microdomain surrounding plasmodesmata in apple fruit. Plant Physiol 114(2):539–547. https://doi.org/10.1104/pp.114.2.539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chen MH, Sheng J, Hind G, Handa AK, Citovsky V (2000) Interaction between the tobacco mosaic virus movement protein and host cell pectin methylesterases is required for viral cell-to-cell movement. EMBO J 19(5):913–920

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Wu H-C, Bulgakov VP, Jinn T-L (2018) Pectin methylesterases: cell wall remodeling proteins are required for plant response to heat stress. Front Plant Sci 9:1612

    PubMed  PubMed Central  Google Scholar 

  50. Carpita NC (2011) Update on mechanisms of plant cell wall biosynthesis: how plants make cellulose and other (1- 4)-β-D-glycans. Plant Physiol 155(1):171–184

    CAS  PubMed  Google Scholar 

  51. Lopez-Sanchez P, Martinez-Sanz M, Bonilla MR, Wang D, Gilbert EP, Stokes JR, Gidley MJ (2017) Cellulose-pectin composite hydrogels: intermolecular interactions and material properties depend on order of assembly. Carbohydr Polym 162:71–81

    CAS  PubMed  Google Scholar 

  52. Park S-H, Li F, Renaud J, Shen W, Li Y, Guo L, Cui H, Sumarah M, Wang A (2017) NbEXPA1, an α-expansin, is plasmodesmata-specific and a novel host factor for potyviral infection. Plant J 92(5):846–861. https://doi.org/10.1111/tpj.13723

    Article  CAS  PubMed  Google Scholar 

  53. Bayer E, Thomas C, Maule A (2008) Symplastic domains in the Arabidopsis shoot apical meristem correlate with PDLP1 expression patterns. Plant Signal Behav 3(10):853–855

    PubMed  PubMed Central  Google Scholar 

  54. Han X, Kim JY (2016) Integrating hormone- and micromolecule-mediated signaling with plasmodesmal communication. Mol Plant 9(1):46–56. https://doi.org/10.1016/j.molp.2015.08.015

    Article  CAS  PubMed  Google Scholar 

  55. Vu MH, Iswanto ABB, Lee J, Kim J-Y (2020) The role of plasmodesmata-associated receptor in plant development and environmental response. Plan Theory 9(2):216. https://doi.org/10.3390/plants9020216

    Article  CAS  Google Scholar 

  56. Caillaud MC, Wirthmueller L, Sklenar J, Findlay K, Piquerez SJ, Jones AM, Robatzek S, Jones JD, Faulkner C (2014) The plasmodesmal protein PDLP1 localises to haustoria-associated membranes during downy mildew infection and regulates callose deposition. PLoS Pathog 10(10):e1004496. https://doi.org/10.1371/journal.ppat.1004496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Cui W, Lee J-Y (2016) Arabidopsis callose synthases CalS1/8 regulate plasmodesmal permeability during stress. Nat Plants 2:16034

    CAS  PubMed  Google Scholar 

  58. Hunter K, Kimura S, Rokka A, Tran HC, Toyota M, Kukkonen JP, Wrzaczek M (2019) CRK2 enhances salt tolerance by regulating callose deposition in connection with PLDα1. Plant Physiol 180(4):2004–2021. https://doi.org/10.1104/pp.19.00560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Fichman Y, Myers RJ, Grant DG, Mittler R (2021) Plasmodesmata-localized proteins and ROS orchestrate light-induced rapid systemic signaling in Arabidopsis. Sci Signal 14(671):eabf0322

    CAS  PubMed  Google Scholar 

  60. Wang X, Sager R, Cui W, Zhang C, Lu H, Lee JY (2013) Salicylic acid regulates plasmodesmata closure during innate immune responses in Arabidopsis. Plant Cell 25(6):2315–2329. https://doi.org/10.1105/tpc.113.110676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sager R, Wang X, Hill K, Yoo B-C, Caplan J, Nedo A, Tran T, Bennett MJ, Lee J-Y (2020) Auxin-dependent control of a plasmodesmal regulator creates a negative feedback loop modulating lateral root emergence. Nat Commun 11(1):1–10

    Google Scholar 

  62. Tylewicz S, Petterle A, Marttila S, Miskolczi P, Azeez A, Singh R, Immanen J, Mähler N, Hvidsten T, Eklund D (2018) Photoperiodic control of seasonal growth is mediated by ABA acting on cell-cell communication. Science 360(6385):212–215

    CAS  PubMed  Google Scholar 

  63. Mellor NL, Voß U, Janes G, Bennett MJ, Wells DM, Band LR (2020) Auxin fluxes through plasmodesmata modify root-tip auxin distribution. Development 147(6):dev181669. https://doi.org/10.1242/dev.181669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kieffer M, Neve J, Kepinski S (2010) Defining auxin response contexts in plant development. Curr Opin Plant Biol 13(1):12–20

    CAS  PubMed  Google Scholar 

  65. Paterlini A (2020) Uncharted routes: exploring the relevance of auxin movement via plasmodesmata. Biol Open 9(11):bio055541

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Rock CD, Sun X (2005) Crosstalk between ABA and auxin signaling pathways in roots of Arabidopsis thaliana (L.) Heynh. Planta 222(1):98–106

    CAS  PubMed  Google Scholar 

  67. Bishopp A, Lehesranta S, Vatén A, Help H, El-Showk S, Scheres B, Helariutta K, Mähönen AP, Sakakibara H, Helariutta Y (2011) Phloem-transported cytokinin regulates polar auxin transport and maintains vascular pattern in the root meristem. Curr Biol 21(11):927–932

    CAS  PubMed  Google Scholar 

  68. Durand M, Mainson D, Porcheron B, Maurousset L, Lemoine R, Pourtau N (2018) Carbon source–sink relationship in Arabidopsis thaliana: the role of sucrose transporters. Planta 247(3):587–611

    CAS  PubMed  Google Scholar 

  69. Brunkard JO, Xu M, Scarpin MR, Chatterjee S, Shemyakina EA, Goodman HM, Zambryski P (2020) TOR dynamically regulates plant cell-cell transport. Proc Natl Acad Sci U S A 117(9):5049–5058. https://doi.org/10.1073/pnas.1919196117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Yan D, Yadav SR, Paterlini A, Nicolas WJ, Petit JD, Brocard L, Belevich I, Grison MS, Vaten A, Karami L (2019) Sphingolipid biosynthesis modulates plasmodesmal ultrastructure and phloem unloading. Nat Plants 5(6):604–615

    PubMed  PubMed Central  Google Scholar 

  71. Hu C, Ham B-K, El-Shabrawi HM, Alexander D, Zhang D, Ryals J, Lucas WJ (2016) Proteomics and metabolomics analyses reveal the cucurbit sieve tube system as a complex metabolic space. Plant J 87(5):442–454. https://doi.org/10.1111/tpj.13209

    Article  CAS  PubMed  Google Scholar 

  72. Xu Y, Yuan Y, Du N, Wang Y, Shu S, Sun J, Guo S (2018) Proteomic analysis of heat stress resistance of cucumber leaves when grafted onto Momordica rootstock. Hortic Res 5(1):1–18

    PubMed  PubMed Central  Google Scholar 

  73. Liu N, Shen G, Xu Y, Liu H, Zhang J, Li S, Li J, Zhang C, Qi J, Wang L, Wu J (2020) Extensive inter-plant protein transfer between Cuscuta parasites and their host plants. Mol Plant 13(4):573–585. https://doi.org/10.1016/j.molp.2019.12.002

    Article  CAS  PubMed  Google Scholar 

  74. Koizumi K, Gallagher KL (2013) Identification of SHRUBBY, a SHORT-ROOT and SCARECROW interacting protein that controls root growth and radial patterning. Development 140(6):1292–1300. https://doi.org/10.1242/dev.090761

    Article  CAS  PubMed  Google Scholar 

  75. Carlsbecker A, Lee J-Y, Roberts CJ, Dettmer J, Lehesranta S, Zhou J, Lindgren O, Moreno-Risueno MA, Vatén A, Thitamadee S (2010) Cell signalling by microRNA165/6 directs gene dose-dependent root cell fate. Nature 465(7296):316–321

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Kim H, Zhou J, Kumar D, Jang G, Ryu KH, Sebastian J, Miyashima S, Helariutta Y, Lee J-Y (2020) SHORTROOT-mediated intercellular signals coordinate phloem development in arabidopsis roots. Plant Cell 32(5):1519–1535

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Wu S, Lee C-M, Hayashi T, Price S, Divol F, Henry S, Pauluzzi G, Perin C, Gallagher KL (2014) A plausible mechanism, based upon Short-root movement, for regulating the number of cortex cell layers in roots. Proc Natl Acad Sci 111(45):16184–16189

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Pi L, Aichinger E, van der Graaff E, Llavata-Peris CI, Weijers D, Hennig L, Groot E, Laux T (2015) Organizer-derived WOX5 signal maintains root columella stem cells through chromatin-mediated repression of CDF4 expression. Dev Cell 33(5):576–588

    CAS  PubMed  Google Scholar 

  79. Lu K-J, De Rybel B, Van Mourik H, Weijers D (2018) Regulation of intercellular TARGET OF MONOPTEROS 7 protein transport in the Arabidopsis root. Development 145(2):dev15289280

    Google Scholar 

  80. Kim J-Y, Rim Y, Wang J, Jackson D (2005) A novel cell-to-cell trafficking assay indicates that the KNOX homeodomain is necessary and sufficient for intercellular protein and mRNA trafficking. Genes Dev 19(7):788–793

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Xu XM, Wang J, Xuan Z, Goldshmidt A, Borrill PG, Hariharan N, Kim JY, Jackson D (2011) Chaperonins facilitate KNOTTED1 cell-to-cell trafficking and stem cell function. Science 333(6046):1141–1144

    CAS  PubMed  Google Scholar 

  82. Buhtz A, Springer F, Chappell L, Baulcombe DC, Kehr J (2008) Identification and characterization of small RNAs from the phloem of Brassica napus. Plant J 53(5):739–749

    CAS  PubMed  Google Scholar 

  83. Thieme CJ, Rojas-Triana M, Stecyk E, Schudoma C, Zhang W, Yang L, Minambres M, Walther D, Schulze WX, Paz-Ares J, Scheible WR, Kragler F (2015) Endogenous Arabidopsis messenger RNAs transported to distant tissues. Nat Plants 1(4):15025. https://doi.org/10.1038/nplants.2015.25

    Article  CAS  PubMed  Google Scholar 

  84. Ham B-K, Lucas WJ (2017) Phloem-mobile RNAs as systemic signaling agents. Annu Rev Plant Biol 68:173–195

    CAS  PubMed  Google Scholar 

  85. Yang L, Perrera V, Saplaoura E, Apelt F, Bahin M, Kramdi A, Olas J, Mueller-Roeber B, Sokolowska E, Zhang W, Li R, Pitzalis N, Heinlein M, Zhang S, Genovesio A, Colot V, Kragler F (2019) m5C methylation guides systemic transport of messenger RNA over graft junctions in plants. Curr Biol 29(15):2465–2476. https://doi.org/10.1016/j.cub.2019.06.042

    Article  CAS  PubMed  Google Scholar 

  86. Martin A, Adam H, Díaz-Mendoza M, Żurczak M, González-Schain ND, Suárez-López P (2009) Graft-transmissible induction of potato tuberization by the microRNA miR172. Development 136(17):2873–2881

    CAS  PubMed  Google Scholar 

  87. Mok DW, Mok MC (2001) Cytokinin metabolism and action. Annu Rev Plant Biol 52(1):89–118

    CAS  Google Scholar 

  88. Fernandez-Calvino L, Faulkner C, Walshaw J, Saalbach G, Bayer E, Benitez-Alfonso Y, Maule A (2011) Arabidopsis plasmodesmal proteome. PLoS one 6(4):e18880

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Leijon F, Melzer M, Zhou Q, Srivastava V, Bulone V (2018) Proteomic analysis of plasmodesmata from Populus cell suspension cultures in relation with callose biosynthesis. Front Plant Sci 9:1681

    PubMed  PubMed Central  Google Scholar 

  90. Fridborg I, Grainger J, Page A, Coleman M, Findlay K, Angell S (2003) TIP, a novel host factor linking callose degradation with the cell-to-cell movement of potato virus X. Mol Plant-Microbe Interact 16(2):132–140

    CAS  PubMed  Google Scholar 

  91. Sagi G, Katz A, Guenoune-Gelbart D, Epel BL (2005) Class 1 reversibly glycosylated polypeptides are plasmodesmal-associated proteins delivered to plasmodesmata via the Golgi apparatus. Plant Cell 17(6):1788–1800

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Kraner ME, Müller C, Sonnewald U (2017) Comparative proteomic profiling of the choline transporter-like1 (CHER 1) mutant provides insights into plasmodesmata composition of fully developed Arabidopsis thaliana leaves. Plant J 92(4):696–709

    CAS  PubMed  Google Scholar 

  93. Vaddepalli P, Herrmann A, Fulton L, Oelschner M, Hillmer S, Stratil TF, Fastner A, Hammes UZ, Ott T, Robinson DG (2014) The C2-domain protein QUIRKY and the receptor-like kinase STRUBBELIG localize to plasmodesmata and mediate tissue morphogenesis in Arabidopsis thaliana. Development 141(21):4139-48 108

    Google Scholar 

  94. Liu L, Liu C, Hou X, Xi W, Shen L, Tao Z, Wang Y, Yu H (2012) FTIP1 is an essential regulator required for florigen transport. PLoS Biol 10(4):e1001313

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Rodriguez A, Angel CA, Lutz L, Leisner SM, Nelson RS, Schoelz JE (2014) Association of the P6 protein of cauliflower mosaic virus with plasmodesmata and plasmodesmal proteins. Plant Physiol 166(3):1345–1358. https://doi.org/10.1104/pp.114.249250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Xu B, Cheval C, Laohavisit A, Hocking B, Chiasson D, Olsson TSG, Shirasu K, Faulkner C, Gilliham M (2017) A calmodulin-like protein regulates plasmodesmal closure during bacterial immune responses. New Phytol 215(1):77–84. https://doi.org/10.1111/nph.14599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Lee J-Y, Taoka K-I, Yoo B-C, Ben-Nissan G, Kim D-J, Lucas WJ (2005) Plasmodesmal-associated protein kinase in tobacco and Arabidopsis recognizes a subset of non-cell-autonomous proteins. Plant Cell 17(10):2817–2831. https://doi.org/10.1105/tpc.105.034330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Stahl Y, Grabowski S, Bleckmann A, Kühnemuth R, Weidtkamp-Peters S, Pinto KG, Kirschner GK, Schmid JB, Wink RH, Hülsewede A (2013) Moderation of Arabidopsis root stemness by CLAVATA1 and ARABIDOPSIS CRINKLY4 receptor kinase complexes. Curr Biol 23(5):362–371

    CAS  PubMed  Google Scholar 

  99. Ham B-K, Li G, Kang B-H, Zeng F, Lucas WJ (2012) Overexpression of Arabidopsis plasmodesmata germin-like proteins disrupts root growth and development. Plant Cell 24(9):3630–3648. https://doi.org/10.1105/tpc.112.101063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Grison MS, Kirk P, Brault ML, Wu XN, Schulze WX, Benitez-Alfonso Y, Immel F, Bayer EM (2019) Plasma membrane-associated receptor-like kinases relocalize to plasmodesmata in response to osmotic stress. Plant Physiol 181(1):142–160

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Deeks MJ, Calcutt JR, Ingle EK, Hawkins TJ, Chapman S, Richardson AC, Mentlak DA, Dixon MR, Cartwright F, Smertenko AP (2012) A superfamily of actin-binding proteins at the actin-membrane nexus of higher plants. Curr Biol 22(17):1595–1600

    CAS  PubMed  Google Scholar 

  102. Rosas-Diaz T, Zhang D, Fan P, Wang L, Ding X, Jiang Y, Jimenez-Gongora T, Medina-Puche L, Zhao X, Feng Z (2018) A virus-targeted plant receptor-like kinase promotes cell-to-cell spread of RNAi. Proc Natl Acad Sci U S A 115(6):1388–1393

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Faulkner C, Petutschnig E, Benitez-Alfonso Y, Beck M, Robatzek S, Lipka V, Maule AJ (2013) LYM2-dependent chitin perception limits molecular flux via plasmodesmata. Proc Natl Acad Sci 110(22):9166–9170

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Cheval C, Samwald S, Johnston MG, De Keijzer J, Breakspear A, Liu X, Bellandi A, Kadota Y, Zipfel C, Faulkner C (2020) Chitin perception in plasmodesmata characterizes submembrane immune-signaling specificity in plants. Proc Natl Acad Sci U S A 117(17):9621–9629

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Simpson C, Thomas C, Findlay K, Bayer E, Maule AJ (2009) An Arabidopsis GPI-anchor plasmodesmal neck protein with callose binding activity and potential to regulate cell-to-cell trafficking. Plant Cell 21(2):581–594

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Thomas CL, Bayer EM, Ritzenthaler C, Fernandez-Calvino L, Maule AJ (2008) Specific targeting of a plasmodesmal protein affecting cell-to-cell communication. PLoS Biol 6(1):e7

    PubMed  PubMed Central  Google Scholar 

  107. Epel BL, van Lent JW, Cohen L, Kotlizky G, Katz A, Yahalom A (1996) A 41 kDa protein isolated from maize mesocotyl cell walls immunolocalizes to plasmodesmata. Protoplasma 191(1–2):70–78

    CAS  Google Scholar 

  108. Levy A, Judy S (2015) Synaptotagmin SYTA forms ER-plasma membrane junctions that are recruited to Plasmodesmata for plant virus movement. Curr Biol 25(15):2018–2025. https://doi.org/10.1016/j.cub.2015.06.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Wang P, Richardson C, Hawkins TJ, Sparkes I, Hawes C, Hussey PJ (2016) Plant VAP27 proteins: domain characterization, intracellular localization and role in plant development. New Phytol 210(4):1311–1326. https://doi.org/10.1111/nph.13857

    Article  CAS  PubMed  Google Scholar 

  110. Levy A, Erlanger M, Rosenthal M, Epel BL (2007) A plasmodesmata-associated β-1, 3-glucanase in Arabidopsis. Plant J 49(4):669–682

    CAS  PubMed  Google Scholar 

  111. Kirk P, Amsbury S, German L, Gaudioso-Pedraza R, Benitez-Alfonso Y (2021) Comparative meta-proteomic analysis for the identification of novel plasmodesmata proteins and regulatory cues. bioRxiv. https://doi.org/10.1101/2021.05.04.442592

  112. Mi H, Ebert D, Muruganujan A, Mills C, Albou L-P, Mushayamaha T, Thomas PD (2021) PANTHER version 16: a revised family classification, tree-based classification tool, enhancer regions and extensive API. Nucleic Acids Res 49(D1):D394–D403

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

PK was supported by a BBSRC DTP (BB/M011151/1). YBA is supported by a UKRI Future Leaders Fellowship (MR/T04263X/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoselin Benitez-Alfonso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kirk, P., Benitez-Alfonso, Y. (2022). Plasmodesmata Structural Components and Their Role in Signaling and Plant Development. In: Benitez-Alfonso, Y., Heinlein, M. (eds) Plasmodesmata. Methods in Molecular Biology, vol 2457. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2132-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2132-5_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2131-8

  • Online ISBN: 978-1-0716-2132-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics