Skip to main content

Bioinformatics-Based Approaches to Study Virus–Host Interactions During SARS-CoV-2 Infection

  • Protocol
  • First Online:
SARS-CoV-2

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2452))

Abstract

As the knowledge of biomolecules is increasing from the last decades, it is helping the researchers to understand the unsolved issues regarding virology. Recent technologies in high-throughput sequencing are providing the swift generation of SARS-CoV-2 genomic data with the basic inside of viral infection. Owing to various virus–host protein interactions, high-throughput technologies are unable to provide complete details of viral pathogenesis. Identifying the virus–host protein interactions using bioinformatics approaches can assist in understanding the mechanism of SARS-CoV-2 infection and pathogenesis. In this chapter, recent integrative bioinformatics approaches are discussed to help the virologists and computational biologists in the identification of structurally similar proteins of human and SARS-CoV-2 virus, and to predict the potential of virus–host interactions. Considering experimental and time limitations for effective viral drug development, computational aided drug design (CADD) can reduce the gap between drug prediction and development. More research with respect to evolutionary solutions could be helpful to make a new pipeline for virus–host protein–protein interactions and provide more understanding to disclose the cases of host switch, and also expand the virulence of the pathogen and host range in developing viral infections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Su S, Wong G, Shi W, Liu J, Lai ACK, Zhou J, Liu W, Bi Y, Gao GF (2016) Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiol 24(6):490–502. https://doi.org/10.1016/j.tim.2016.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cascella M, Rajnik M, Aleem A, Dulebohn SC, Di Napoli R (2021) Features, evaluation, and treatment of coronavirus (COVID-19). StatPearls Publishing LLC, Copyright © 2021, Treasure Island (FL)

    Google Scholar 

  3. Zhong NS, Zheng BJ, Li YM, Poon XZH, Chan KH, Li PH, Tan SY, Chang Q, Xie JP, Liu XQ, Xu J, Li DX, Yuen KY, Peiris GY (2003) Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, people’s Republic of China, in February, 2003. Lancet 362(9393):1353–1358. https://doi.org/10.1016/s0140-6736(03)14630-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bradburne AF, Bynoe ML, Tyrrell DA (1967) Effects of a “new” human respiratory virus in volunteers. Br Med J 3(5568):767–769. https://doi.org/10.1136/bmj.3.5568.767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Peiris JS, Yuen KY, Osterhaus AD, Stohr K (2003) The severe acute respiratory syndrome. N Engl J Med 349(25):2431–2441. https://doi.org/10.1056/NEJMra032498

    Article  CAS  PubMed  Google Scholar 

  6. Rehman SU, Shafique L, Ihsan A, Liu Q (2020) Evolutionary trajectory for the emergence of novel coronavirus SARS-CoV-2. Pathogens 9(3). https://doi.org/10.3390/pathogens9030240

  7. van Boheemen S, de Graaf M, Lauber C, Bestebroer TM, Raj VS, Zaki AM, Osterhaus AD, Haagmans BL, Gorbalenya AE, Snijder EJ, Fouchier RA (2012) Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans. MBio 3(6). https://doi.org/10.1128/mBio.00473-12

  8. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, Liu L, Shan H, Lei CL, DSC H, Du B, Li LJ, Zeng G, Yuen KY, Chen RC, Tang CL, Wang T, Chen PY, Xiang J, Li SY, Wang JL, Liang ZJ, Peng YX, Wei L, Liu Y, Hu YH, Peng P, Wang JM, Liu JY, Chen Z, Li G, Zheng ZJ, Qiu SQ, Luo J, Ye CJ, Zhu SY, Zhong NS, China Medical Treatment Expert Group for C (2020) Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 382(18):1708–1720. https://doi.org/10.1056/NEJMoa2002032

    Article  CAS  PubMed  Google Scholar 

  9. World Health Organization (WHO), (2020) WHO- Coronavirus disease (COVID-19) pandemic report https://www.who.int/emergencies/diseases/novel-coronavirus-2019

  10. Hofmann H, Pyrc K, van der Hoek L, Geier M, Berkhout B, Pohlmann S (2005) Human coronavirus NL63 employs the severe acute respiratory syndrome coronavirus receptor for cellular entry. Proc Natl Acad Sci U S A 102(22):7988–7993. https://doi.org/10.1073/pnas.0409465102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Belouzard S, Chu VC, Whittaker GR (2009) Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites. Proc Natl Acad Sci U S A 106(14):5871–5876. https://doi.org/10.1073/pnas.0809524106

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kamitani W, Narayanan K, Huang C, Lokugamage K, Ikegami T, Ito N, Kubo H, Makino S (2006) Severe acute respiratory syndrome coronavirus nsp1 protein suppresses host gene expression by promoting host mRNA degradation. Proc Natl Acad Sci U S A 103(34):12885–12890. https://doi.org/10.1073/pnas.0603144103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kim J, Zhang J, Cha Y, Kolitz S, Funt J, Escalante Chong R, Barrett S, Kusko R, Zeskind B, Kaufman H (2020) Advanced bioinformatics rapidly identifies existing therapeutics for patients with coronavirus disease-2019 (COVID-19). J Transl Med 18(1):257. https://doi.org/10.1186/s12967-020-02430-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ujike M, Taguchi F (2015) Incorporation of spike and membrane glycoproteins into coronavirus virions. Viruses 7(4):1700–1725. https://doi.org/10.3390/v7041700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Glowacka I, Bertram S, Muller MA, Allen P, Soilleux E, Pfefferle S, Steffen I, Tsegaye TS, He Y, Gnirss K, Niemeyer D, Schneider H, Drosten C, Pohlmann S (2011) Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response. J Virol 85(9):4122–4134. https://doi.org/10.1128/JVI.02232-10

    Article  PubMed  PubMed Central  Google Scholar 

  16. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, Qiu Y, Wang J, Liu Y, Wei Y, Xia J, Yu T, Zhang X, Zhang L (2020) Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 395(10223):507–513. https://doi.org/10.1016/S0140-6736(20)30211-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Holshue ML, DeBolt C, Lindquist S, Lofy KH, Wiesman J, Bruce H, Spitters C, Ericson K, Wilkerson S, Tural A, Diaz G, Cohn A, Fox L, Patel A, Gerber SI, Kim L, Tong S, Lu X, Lindstrom S, Pallansch MA, Weldon WC, Biggs HM, Uyeki TM, Pillai SK, Washington State -nCo VCIT (2020) First case of 2019 novel coronavirus in the United States. N Engl J Med 382 (10):929-936. https://doi.org/10.1056/NEJMoa2001191

  18. Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, Shi Z, Hu Z, Zhong W, Xiao G (2020) Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res 30(3):269–271. https://doi.org/10.1038/s41422-020-0282-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Low ZY, Farouk IA, Lal SK (2020) Drug repositioning: new approaches and future prospects for life-debilitating diseases and the COVID-19 pandemic outbreak. Viruses 12(9). https://doi.org/10.3390/v12091058

  20. Hufsky F, Lamkiewicz K, Almeida A, Aouacheria A, Arighi C, Bateman A, Baumbach J, Beerenwinkel N, Brandt C, Cacciabue M, Chuguransky S, Drechsel O, Finn RD, Fritz A, Fuchs S, Hattab G, Hauschild AC, Heider D, Hoffmann M, Holzer M, Hoops S, Kaderali L, Kalvari I, von Kleist M, Kmiecinski R, Kuhnert D, Lasso G, Libin P, List M, Lochel HF, Martin MJ, Martin R, Matschinske J, McHardy AC, Mendes P, Mistry J, Navratil V, Nawrocki EP, O'Toole AN, Ontiveros-Palacios N, Petrov AI, Rangel-Pineros G, Redaschi N, Reimering S, Reinert K, Reyes A, Richardson L, Robertson DL, Sadegh S, Singer JB, Theys K, Upton C, Welzel M, Williams L, Marz M (2021) Computational strategies to combat COVID-19: useful tools to accelerate SARS-CoV-2 and coronavirus research. Brief Bioinform 22(2):642–663. https://doi.org/10.1093/bib/bbaa232

    Article  CAS  PubMed  Google Scholar 

  21. Moore JH, Barnett I, Boland MR, Chen Y, Demiris G, Gonzalez-Hernandez G, Herman DS, Himes BE, Hubbard RA, Kim D, Morris JS, Mowery DL, Ritchie MD, Shen L, Urbanowicz R, Holmes JH (2020) Ideas for how informaticians can get involved with COVID-19 research. BioData Mining 13(1):3. https://doi.org/10.1186/s13040-020-00213-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Huang X, He C, Hua X, Kan A, Sun S, Wang J, Li S (2020) Bioinformatic analysis of correlation between immune infiltration and COVID-19 in cancer patients. Int J Biol Sci 16(13):2464–2476. https://doi.org/10.7150/ijbs.48639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gui M, Song W, Zhou H, Xu J, Chen S, Xiang Y, Wang X (2017) Cryo-electron microscopy structures of the SARS-CoV spike glycoprotein reveal a prerequisite conformational state for receptor binding. Cell Res 27(1):119–129. https://doi.org/10.1038/cr.2016.152

    Article  CAS  PubMed  Google Scholar 

  24. Holm L, Laakso LM (2016) Dali server update. Nucleic Acids Res 44(W1):W351–W355. https://doi.org/10.1093/nar/gkw357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. JAlmagro Armenteros JJ, Sonderby CK, Sonderby SK, Nielsen H, Winther O (2017) DeepLoc: prediction of protein subcellular localization using deep learning. Bioinformatics 33(21):3387–3395. https://doi.org/10.1093/bioinformatics/btx431

    Article  CAS  Google Scholar 

  26. Dyer MD, Murali TM, Sobral BW (2008) The landscape of human proteins interacting with viruses and other pathogens. PLoS Pathog 4(2):e32. https://doi.org/10.1371/journal.ppat.0040032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bailer SM, Haas J (2009) Connecting viral with cellular interactomes. Curr Opin Microbiol 12(4):453–459. https://doi.org/10.1016/j.mib.2009.06.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gursoy A, Keskin O, Nussinov R (2008) Topological properties of protein interaction networks from a structural perspective. Biochem Soc Trans 36(Pt 6):1398–1403. https://doi.org/10.1042/BST0361398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zheng LL, Li C, Ping J, Zhou Y, Li Y, Hao P (2014) The domain landscape of virus-host interactomes. Biomed Res Int 2014:867235. https://doi.org/10.1155/2014/867235

    Article  PubMed  PubMed Central  Google Scholar 

  30. Dyer MD, Murali TM, Sobral BW (2011) Supervised learning and prediction of physical interactions between human and HIV proteins. Infect Genet Evol 11(5):917–923. https://doi.org/10.1016/j.meegid.2011.02.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Brito AF, Pinney JW (2017) Protein-protein interactions in virus-host systems. Front Microbiol 8:1557. https://doi.org/10.3389/fmicb.2017.01557

    Article  PubMed  PubMed Central  Google Scholar 

  32. Navratil V, de Chassey B, Meyniel L, Delmotte S, Gautier C, Andre P, Lotteau V, Rabourdin-Combe C (2009) VirHostNet: a knowledge base for the management and the analysis of proteome-wide virus-host interaction networks. Nucleic Acids Res 37(Database issue):D661–D668. https://doi.org/10.1093/nar/gkn794

    Article  CAS  PubMed  Google Scholar 

  33. Gardner MR, Fellinger CH, Kattenhorn LM, Davis-Gardner ME, Weber JA, Alfant B, Zhou AS, Prasad NR, Kondur HR, Newton WA, Weisgrau KL, Rakasz EG, Lifson JD, Gao G, Schultz-Darken N, Farzan M (2019) AAV-delivered eCD4-Ig protects rhesus macaques from high-dose SIVmac239 challenges. Sci Transl Med 11(502). https://doi.org/10.1126/scitranslmed.aau5409

  34. Oughtred R, Stark C, Breitkreutz BJ, Rust J, Boucher L, Chang C, Kolas N, O'Donnell L, Leung G, McAdam R, Zhang F, Dolma S, Willems A, Coulombe-Huntington J, Chatr-Aryamontri A, Dolinski K, Tyers M (2019) The BioGRID interaction database: 2019 update. Nucleic Acids Res 47(D1):D529–D541. https://doi.org/10.1093/nar/gky1079

    Article  CAS  PubMed  Google Scholar 

  35. Stark C, Breitkreutz BJ, Reguly T, Boucher L, Breitkreutz A, Tyers M (2006) BioGRID: a general repository for interaction datasets. Nucleic Acids Res 34(Database issue):D535–D539. https://doi.org/10.1093/nar/gkj109

    Article  CAS  PubMed  Google Scholar 

  36. Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth A, Minguez P, Doerks T, Stark M, Muller J, Bork P, Jensen LJ, von Mering C (2011) The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res 39(Database issue):D561–D568. https://doi.org/10.1093/nar/gkq973

    Article  CAS  PubMed  Google Scholar 

  37. Baltimore D (1971) Expression of animal virus genomes. Bacteriol Rev 35(3):235–241. https://doi.org/10.1128/br.35.3.235-241.1971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Vogel C, Bashton M, Kerrison ND, Chothia C, Teichmann SA (2004) Structure, function and evolution of multidomain proteins. Curr Opin Struct Biol 14(2):208–216. https://doi.org/10.1016/j.sbi.2004.03.011

    Article  CAS  PubMed  Google Scholar 

  39. Apic G, Gough J, Teichmann SA (2001) An insight into domain combinations. Bioinformatics 17(Suppl 1):S83–S89. https://doi.org/10.1093/bioinformatics/17.suppl_1.s83

    Article  PubMed  Google Scholar 

  40. Lee H, Deng M, Sun F, Chen T (2006) An integrated approach to the prediction of domain-domain interactions. BMC Bioinformatics 7:269. https://doi.org/10.1186/1471-2105-7-269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yellaboina S, Tasneem A, Zaykin DV, Raghavachari B, Jothi R (2011) DOMINE: a comprehensive collection of known and predicted domain-domain interactions. Nucleic Acids Res 39(Database issue):D730–D735. https://doi.org/10.1093/nar/gkq1229

    Article  CAS  PubMed  Google Scholar 

  42. Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ (2005) PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res 33(Web Server issue):W363–W367. https://doi.org/10.1093/nar/gki481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chen R, Li L, Weng Z (2003) ZDOCK: an initial-stage protein-docking algorithm. Proteins 52(1):80–87. https://doi.org/10.1002/prot.10389

    Article  CAS  PubMed  Google Scholar 

  44. Wallace AC, Laskowski RA, Thornton JM (1995) LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng 8(2):127–134. https://doi.org/10.1093/protein/8.2.127

    Article  CAS  PubMed  Google Scholar 

  45. Vilar S, Cozza G, Moro S (2008) Medicinal chemistry and the molecular operating environment (MOE): application of QSAR and molecular docking to drug discovery. Curr Top Med Chem 8(18):1555–1572. https://doi.org/10.2174/156802608786786624

    Article  CAS  PubMed  Google Scholar 

  46. W.L. Delano, The PyMOL molecular graphics system, schrodinger. (2002). http://www.pymol.sourceforge.net

  47. Byrum S, Smart SK, Larson S, Tackett AJ (2012) Analysis of stable and transient protein-protein interactions. Methods Mol Biol 833:143–152. https://doi.org/10.1007/978-1-61779-477-3_10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Franzosa EA, Xia Y (2011) Structural principles within the human-virus protein-protein interaction network. Proc Natl Acad Sci U S A 108(26):10538–10543. https://doi.org/10.1073/pnas.1101440108\

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Guirimand T, Delmotte S, Navratil V (2015) VirHostNet 2.0: surfing on the web of virus/host molecular interactions data. Nucleic Acids Res 43(Database issue):D583–D587. https://doi.org/10.1093/nar/gku1121

    Article  CAS  PubMed  Google Scholar 

  50. Calderone A, Licata L, Cesareni G (2015) VirusMentha: a new resource for virus-host protein interactions. Nucleic Acids Res 43(Database issue):D588–D592. https://doi.org/10.1093/nar/gku830

    Article  CAS  PubMed  Google Scholar 

  51. Hermjakob H, Montecchi-Palazzi L, Lewington C, Mudali S, Kerrien S, Orchard S, Vingron M, Roechert B, Roepstorff P, Valencia A, Margalit H, Armstrong J, Bairoch A, Cesareni G, Sherman D, Apweiler R (2004) IntAct: an open source molecular interaction database. Nucleic Acids Res 32(Database issue):D452–D455. https://doi.org/10.1093/nar/gkh052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Xenarios I, Salwinski L, Duan XJ, Higney P, Kim SM, Eisenberg D (2002) DIP, the database of interacting proteins: a research tool for studying cellular networks of protein interactions. Nucleic Acids Res 30(1):303–305. https://doi.org/10.1093/nar/30.1.303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Licata L, Briganti L, Peluso D, Perfetto L, Iannuccelli M, Galeota E, Sacco F, Palma A, Nardozza AP, Santonico E, Castagnoli L, Cesareni G (2012) MINT, the molecular interaction database: 2012 update. Nucleic Acids Res 40(Database issue):D857–D861. https://doi.org/10.1093/nar/gkr930

    Article  CAS  PubMed  Google Scholar 

  54. Chatr-Aryamontri A, Oughtred R, Boucher L, Rust J, Chang C, Kolas NK, O'Donnell L, Oster S, Theesfeld C, Sellam A, Stark C, Breitkreutz BJ, Dolinski K, Tyers M (2017) The BioGRID interaction database: 2017 update. Nucleic Acids Res 45(D1):D369–D379. https://doi.org/10.1093/nar/gkw1102

    Article  CAS  PubMed  Google Scholar 

  55. Khanday A, Rabani ST, Khan QR, Rouf N Mohi Ud Din M (2020) Machine learning based approaches for detecting COVID-19 using clinical text data. Int J Inf Technol:1–9. https://doi.org/10.1007/s41870-020-00495-9

  56. C Medel-Ramirez, H Medel-Lopez (2020), Data mining for the study of the epidemic (SARS-CoV-2) COVID-19: algorithm for the identification of patients (SARS-CoV-2) COVID 19 in Mexico, Available SSRN 3619549

    Google Scholar 

  57. Muhammad LJ, Islam MM, Usman SS, Ayon SI (2020) Predictive data mining models for novel coronavirus (COVID-19) infected patients' recovery. SN Comput Sci 1(4):206. https://doi.org/10.1007/s42979-020-00216-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Duan Y, Coreas R, Liu Y, Bitounis D, Zhang Z, Parviz D, Strano M, Demokritou P, Zhong W (2020) Prediction of protein corona on nanomaterials by machine learning using novel descriptors. Nano Impact 17. https://doi.org/10.1016/j.impact.2020.100207

  59. Ban Z, Yuan P, Yu F, Peng T, Zhou Q, Hu X (2020) Machine learning predicts the functional composition of the protein corona and the cellular recognition of nanoparticles. Proc Natl Acad Sci U S A 117(19):10492–10499. https://doi.org/10.1073/pnas.1919755117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Papa E, Doucet JP, Sangion A, Doucet-Panaye A (2016) Investigation of the influence of protein corona composition on gold nanoparticle bioactivity using machine learning approaches. SAR QSAR Environ Res 27(7):521–538. https://doi.org/10.1080/1062936X.2016.1197310

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Awais Ihsan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Khan, M.S., Yousafi, Q., Bibi, S., Azhar, M., Ihsan, A. (2022). Bioinformatics-Based Approaches to Study Virus–Host Interactions During SARS-CoV-2 Infection. In: Chu, J.J.H., Ahidjo, B.A., Mok, C.K. (eds) SARS-CoV-2. Methods in Molecular Biology, vol 2452. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2111-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2111-0_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2110-3

  • Online ISBN: 978-1-0716-2111-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics