Skip to main content

Generating Large Numbers of Pancreatic Microtumors on Alginate-Gelatin Hydrogels for Quantitative Imaging of Tumor Growth and Photodynamic Therapy Optimization

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2451))

Abstract

The emerging use of 3D culture models of cancer has provided novel insights into the therapeutic mechanisms of photodynamic therapy on a mesoscopic scale. Especially microscale tumors grown on scaffolds of extracellular matrix can provide statistically robust data on the effects of photosensitizers and photodynamic therapy by leveraging high-throughput imaging-based assays. Although highly informative, the use of such 3D cultures can be impractical due to the high costs and inter-batch variability of the extracellular matrix scaffolds that are necessary to establish such cultures. In this study, we therefore provide a protocol to generate inexpensive and defined hydrogels composed of sodium alginate and gelatin that can be used for culturing 3D microtumors in a manner that is compatible with state-of-the-art imaging assays. Our results reveal that the alginate-gelatin hydrogels can perform similarly to a commercially available ECM scaffold in terms of facilitating microtumor growth. We then applied these microtumor models to quantify the uptake and dark toxicity of benzoporphyrin derivative encapsulated in liposomes with either an anionic or a cationic surface charge. The results indicate that cationic liposomes achieve the highest level of uptake in the microtumors, yet also exert minor toxicity. Moreover, we reveal that there is typically a significant positive correlation between microtumor size and liposome uptake. In conclusion, alginate-based hydrogels are inexpensive and effective scaffolds for 3D culture models of cancer, with versatile applications in research toward photodynamic therapy.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Pampaloni F, Reynaud EG, Stelzer EHK (2007) The third dimension bridges the gap between cell culture and live tissue. Nat Rev Mol Cell Biol 8:839–845

    Article  CAS  PubMed  Google Scholar 

  2. Baker LA, Tiriac H, Clevers H et al (2016) Modeling pancreatic cancer with organoids. Trends Cancer 2:176–190

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bulin A-L, Broekgaarden M, Hasan T (2017) Comprehensive high-throughput image analysis for therapeutic efficacy of architecturally complex heterotypic organoids. Sci Rep 7:16645

    Article  PubMed  PubMed Central  Google Scholar 

  4. Celli JP, Rizvi I, Evans CL et al (2010) Quantitative imaging reveals heterogeneous growth dynamics and treatment-dependent residual tumor distributions in a three-dimensional ovarian cancer model. J Biomed Opt 15:051603

    Article  PubMed  PubMed Central  Google Scholar 

  5. Rizvi I, Celli JP, Evans CL et al (2010) Synergistic enhancement of carboplatin efficacy with photodynamic therapy in a three-dimensional model for micrometastatic ovarian cancer. Cancer Res 70:9319–9328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rahmanzadeh R, Rai P, Celli JP et al (2010) Ki-67 as a molecular target for therapy in an in vitro three-dimensional model for ovarian cancer. Cancer Res 70:9234–9242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Anbil S, Rizvi I, Celli JP et al (2013) Impact of treatment response metrics on photodynamic therapy planning and outcomes in a three-dimensional model of ovarian cancer. J Biomed Opt 18:098004

    Article  PubMed  PubMed Central  Google Scholar 

  8. Broekgaarden M, Rizvi I, Bulin A-L et al (2018) Neoadjuvant photodynamic therapy augments immediate and prolonged oxaliplatin efficacy in metastatic pancreatic cancer organoids. Oncotarget 9:13009–13022

    Article  PubMed  PubMed Central  Google Scholar 

  9. Broekgaarden M, Anbil S, Bulin A-L et al (2019) Modulation of redox metabolism negates cancer-associated fibroblasts-induced treatment resistance in a heterotypic 3D culture platform of pancreatic cancer. Biomaterials 222:119421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bulin A-L, Broekgaarden M, Simeone D et al (2019) Low dose photodynamic therapy harmonizes with radiation therapy to induce beneficial effects on pancreatic heterocellular spheroids. Oncotarget 10:2625–2643

    Article  PubMed  PubMed Central  Google Scholar 

  11. Obaid G, Bano S, Mallidi S et al (2019) Impacting pancreatic cancer therapy in heterotypic in vitro organoids and in vivo tumors with specificity-tuned, NIR-activable photoimmunonanoconjugates: towards conquering desmoplasia? Nano Lett 19:7573–7587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yakavets I, Guereschi C, Lamy L et al (2020) Cyclodextrin nanosponge as a temoporfin nanocarrier: balancing between accumulation and penetration in 3D tumor spheroids. Eur J Pharm Biopharm 154:33–42

    Article  CAS  PubMed  Google Scholar 

  13. Broekgaarden M, Alkhateeb A, Bano S et al (2020) Cabozantinib inhibits photodynamic therapy-induced auto- and paracrine MET signaling in heterotypic pancreatic microtumors. Cancers 12:1401

    Article  CAS  PubMed Central  Google Scholar 

  14. Rizvi I, Gurkan UA, Tasoglu S et al (2013) Flow induces epithelial-mesenchymal transition, cellular heterogeneity and biomarker modulation in 3D ovarian cancer nodules. Proc Natl Acad Sci U S A 110:E1974–E1983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nath S, Pigula M, Khan AP et al (2020) Flow-induced shear stress confers resistance to carboplatin in an adherent three-dimensional model for ovarian cancer: a role for EGFR-targeted Photoimmunotherapy informed by physical stress. J Clin Med 9:924

    Article  CAS  PubMed Central  Google Scholar 

  16. Celli JP, Rizvi I, Blanden AR et al (2014) An imaging-based platform for high-content, quantitative evaluation of therapeutic response in 3D tumour models. Sci Rep 4:3751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Broekgaarden M, Bulin A-L, Frederick J et al (2019) Tracking photodynamic- and chemotherapy-induced redox-state perturbations in 3D culture models of pancreatic cancer: a tool for identifying therapy-induced metabolic changes. J Clin Med 8:1399

    Article  CAS  PubMed Central  Google Scholar 

  18. Caliari SR, Burdick JA (2016) A practical guide to hydrogels for cell culture. Nat Methods 13:405–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Andersen T, Auk-Emblem P, Dornish M (2015) 3D cell culture in alginate hydrogels. Microarrays 4:133–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Capeling MM, Czerwinski M, Huang S et al (2019) Nonadhesive alginate hydrogels support growth of pluripotent stem cell-derived intestinal organoids. Stem Cell Rep 12:381–394

    Article  CAS  Google Scholar 

  21. Broekgaarden M, de Kroon AIPM, Van Gulik TM et al (2013) Development and in vitro proof-of-concept of interstitially targeted zinc- phthalocyanine liposomes for photodynamic therapy. Curr Med Chem 21:377–391

    Article  Google Scholar 

  22. Mondal A, Gebeyehu A, Miranda M et al (2019) Characterization and printability of sodium alginate -gelatin hydrogel for bioprinting NSCLC co-culture. Sci Rep 9:19914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37:106–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Roursgaard M, Knudsen KB, Northeved H et al (2016) In vitro toxicity of cationic micelles and liposomes in cultured human hepatocyte (HepG2) and lung epithelial (A549) cell lines. Toxicol In Vitro 36:164–171

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by the Phospholipid Research Center (Heidelberg, Germany), project number MAB-2020-080/1-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mans Broekgaarden .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Carigga Gutierrez, N.M., Le Clainche, T., Coll, JL., Sancey, L., Broekgaarden, M. (2022). Generating Large Numbers of Pancreatic Microtumors on Alginate-Gelatin Hydrogels for Quantitative Imaging of Tumor Growth and Photodynamic Therapy Optimization. In: Broekgaarden, M., Zhang, H., Korbelik, M., Hamblin, M.R., Heger, M. (eds) Photodynamic Therapy. Methods in Molecular Biology, vol 2451. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2099-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2099-1_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2098-4

  • Online ISBN: 978-1-0716-2099-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics