Skip to main content

Subcutaneous Xenograft Models for Studying PDT In Vivo

  • Protocol
  • First Online:
Photodynamic Therapy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2451))

  • 1003 Accesses

Abstract

The most facile, reproducible, and robust in vivo models for evaluating the anticancer efficacy of photodynamic therapy (PDT) are subcutaneous xenograft models of human tumors. The accessibility and practicality of light irradiation protocols for treating subcutaneous xenograft models also increase their value as relatively rapid tools to expedite the testing of novel photosensitizers, respective formulations, and treatment regimens for PDT. This chapter summarizes the methods used in the literature to prepare various types of subcutaneous xenograft models of human cancers and syngeneic models to explore the role of PDT in immuno-oncology. This chapter also summarizes the PDT treatment protocols tested on the subcutaneous models, and the procedures used to evaluate the efficacy at the molecular, macromolecular, and host organism levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ‘Photodynamic therapy’ keyword search. www.clinicaltrials.gov. March 3 2018 search

  2. Agostinis P, Berg K, Cengel KA, Foster TH, Girotti AW, Gollnick SO, Hahn SM, Hamblin MR, Juzeniene A, Kessel D et al (2011) Photodynamic therapy of cancer: an update. CA Cancer J Clin 61:250–281

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kostron H, Hasan T (2016) Photodynamic medicine: from bench to clinic. Royal Society of Chemistry, London

    Book  Google Scholar 

  4. Huang HC, Rizvi I, Liu J, Anbil S, Kalra A, Lee H, Baglo Y, Paz N, Hayden D, Pereira S et al (2018) Photodynamic priming mitigates chemotherapeutic selection pressures and improves drug delivery. Cancer Res 78:558–571

    Article  CAS  PubMed  Google Scholar 

  5. Mallidi S, Watanabe K, Timerman D, Schoenfeld D, Hasan T (2015) Prediction of tumor recurrence and therapy monitoring using ultrasound-guided photoacoustic imaging. Theranostics 5:289–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gross S, Gilead A, Scherz A, Neeman M, Salomon Y (2003) Monitoring photodynamic therapy of solid tumors online by BOLD-contrast MRI. Nat Med 9:1327–1331

    Article  CAS  PubMed  Google Scholar 

  7. Spring BQ, Bryan Sears R, Zheng LZ, Mai Z, Watanabe R, Sherwood ME, Schoenfeld DA, Pogue BW, Pereira SP, Villa E et al (2016) A photoactivable multi-inhibitor nanoliposome for tumour control and simultaneous inhibition of treatment escape pathways. Nat Nanotechnol 11:378–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tangutoori S, Spring BQ, Mai Z, Palanisami A, Mensah LB, Hasan T (2016) Simultaneous delivery of cytotoxic and biologic therapeutics using nanophotoactivatable liposomes enhances treatment efficacy in a mouse model of pancreatic cancer. Nanomedicine 12:223–234

    Article  CAS  PubMed  Google Scholar 

  9. Xie Q, Jia L, Liu YH, Wei CG (2009) Synergetic anticancer effect of combined gemcitabine and photodynamic therapy on pancreatic cancer in vivo. World J Gastroenterol 15:737–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lindsay EA, Berenbaum MC, Bonnett R, Thomas DG (1991) Photodynamic therapy of a mouse glioma: intracranial tumours are resistant while subcutaneous tumours are sensitive. Br J Cancer 63:242–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Quirk BJ, Brandal G, Donlon S, Vera JC, Mang TS, Foy AB, Lew SM, Girotti AW, Jogal S, LaViolette PS et al (2015) Photodynamic therapy (PDT) for malignant brain tumors—where do we stand? Photodiagn Photodyn Ther 12:530–544

    Article  Google Scholar 

  12. Goff BA, Blake J, Bamberg MP, Hasan T (1996) Treatment of ovarian cancer with photodynamic therapy and immunoconjugates in a murine ovarian cancer model. Br J Cancer 74:1194–1198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Spring BQ, Abu-Yousif AO, Palanisami A, Rizvi I, Zheng X, Mai Z, Anbil S, Sears RB, Mensah LB, Goldschmidt R et al (2014) Selective treatment and monitoring of disseminated cancer micrometastases in vivo using dual-function, activatable immunoconjugates. Proc Natl Acad Sci U S A 111:E933–E942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ohlsson LB, Varas L, Kjellman C, Edvardsen K, Lindvall M (2003) Mesenchymal progenitor cell-mediated inhibition of tumor growth in vivo and in vitro in gelatin matrix. Exp Mol Pathol 75:248–255

    Article  CAS  PubMed  Google Scholar 

  15. Fliedner FP, Hansen AE, Jørgensen JT, Kjær A (2016) The use of matrigel has no influence on tumor development or PET imaging in FaDu human head and neck cancer xenografts. BMC Med Imaging 16:5

    Article  PubMed  PubMed Central  Google Scholar 

  16. Jabaji Z, Sears CM, Brinkley GJ, Lei NY, Joshi VS, Wang J, Lewis M, Stelzner M, Martín MG, Dunn JC (2013) Use of collagen gel as an alternative extracellular matrix for the in vitro and in vivo growth of murine small intestinal epithelium. Tissue Eng Part C Methods 19:961–969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tseng SJ, Liao ZX, Kao SH, Zeng YF, Huang KY, Li HJ, Yang CL, Deng YF, Huang CF, Yang SC et al (2015) Highly specific in vivo gene delivery for p53-mediated apoptosis and genetic photodynamic therapies of tumour. Nat Commun 6:6456

    Article  CAS  PubMed  Google Scholar 

  18. Kawakubo M, Eguchi K, Arai T, Kobayashi K, Hamblin MR (2012) Surface layer-preserving photodynamic therapy (SPPDT) in a subcutaneous mouse model of lung cancer. Lasers Surg Med 44:500–507

    Article  PubMed  PubMed Central  Google Scholar 

  19. Gadzinski JA, Guo J, Philips BJ, Basse P, Craig EK, Bailey L, Comerci JT, Eiseman JL (2016) Evaluation of silicon Phthalocyanine 4 photodynamic therapy against human cervical cancer cells in vitro and in mice. Adv Biol Chem 6:193–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Korbelik M, Dougherty GJ (1999) Photodynamic therapy-mediated immune response against subcutaneous mouse tumors. Cancer Res 59:1941–1946

    CAS  PubMed  Google Scholar 

  21. Tong ZS, Miao PT, Liu TT, Jia YS, Liu XD (2012) Enhanced antitumor effects of BPD-MA-mediated photodynamic therapy combined with adriamycin on breast cancer in mice. Acta Pharmacol Sin 33:1319–1324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Separovic D, Bielawski J, Pierce JS, Merchant S, Tarca AL, Bhatti G, Ogretmen B, Korbelik M (2011) Enhanced tumor cures after Foscan photodynamic therapy combined with the ceramide analog LCL29. Evidence from mouse squamous cell carcinomas for sphingolipids as biomarkers of treatment response. Int J Oncol 38:521–527

    Article  CAS  PubMed  Google Scholar 

  23. Ballou LR, Laulederkind SJ, Rosloniec EF, Raghow R (1996) Ceramide signalling and the immune response. Biochim Biophys Acta 1301:273–287

    Article  PubMed  Google Scholar 

  24. Xiao Z, Tamimi Y, Brown K, Tulip J, Moore R (2002) Interstitial photodynamic therapy in subcutaneously implanted urologic tumors in rats after intravenous administration of 5-aminolevulinic acid. Urol Oncol 7:125–132

    Article  CAS  PubMed  Google Scholar 

  25. Postow MA, Callahan MK, Barker CA, Yamada Y, Yuan J, Kitano S, Mu Z, Rasalan T, Adamow M, Ritter E et al (2012) Immunologic correlates of the abscopal effect in a patient with melanoma. N Engl J Med 366:925–931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Demaria S, Ng B, Devitt ML, Babb JS, Kawashima N, Liebes L, Formenti SC (2004) Ionizing radiation inhibition of distant untreated tumors (abscopal effect) is immune mediated. Int J Radiat Oncol Biol Phys 58:862–870

    Article  PubMed  Google Scholar 

  27. Velez E, Goldberg SN, Kumar G, Wang Y, Gourevitch S, Sosna J, Moon T, Brace CL, Ahmed M (2016) Hepatic thermal ablation: effect of device and heating parameters on local tissue reactions and distant tumor growth. Radiology 281:782–792

    Article  PubMed  Google Scholar 

  28. Castano AP, Mroz P, Hamblin MR (2006) Photodynamic therapy and anti-tumour immunity. Nat Rev Cancer 6:535–545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mroz P, Szokalska A, Wu MX, Hamblin MR (2010) Photodynamic therapy of tumors can lead to development of systemic antigen-specific immune response. PLoS One 5:e15194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lu K, He C, Guo N, Chan C, Ni K, Weichselbaum RR, Lin W (2016) Chlorin-based nanoscale metal-organic framework systemically rejects colorectal cancers via synergistic photodynamic therapy and checkpoint blockade immunotherapy. J Am Chem Soc 138:12502–12510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Williams JA (2018) Using PDX for preclinical cancer drug discovery: the evolving field. J Clin Med 7:41

    Article  CAS  PubMed Central  Google Scholar 

  32. Bosma GC, Custer RP, Bosma MJ (1983) A severe combined immunodeficiency mutation in the mouse. Nature 301:527

    Article  CAS  PubMed  Google Scholar 

  33. Shultz LD, Schweitzer PA, Christianson SW, Gott B, Schweitzer IB, Tennent B, McKenna S, Mobraaten L, Rajan T, Greiner DL (1995) Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice. J Immunol 154:180–191

    CAS  PubMed  Google Scholar 

  34. Bosma M (1992) B and T cell leakiness in the scid mouse mutant. Immunodefic Rev 3:261–276

    CAS  PubMed  Google Scholar 

  35. Nwogu C, Pera P, Bshara W, Attwood K, Pandey R (2016) Photodynamic therapy of human lung cancer xenografts in mice. J Surg Res 200:8–12

    Article  CAS  PubMed  Google Scholar 

  36. Lin TY, Li Y, Liu Q, Chen JL, Zhang H, Lac D, Zhang H, Ferrara KW, Wachsmann-Hogiu S, Li T et al (2016) Novel theranostic nanoporphyrins for photodynamic diagnosis and trimodal therapy for bladder cancer. Biomaterials 104:339–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cassidy JW, Caldas C, Bruna A (2015) Maintaining tumor heterogeneity in patient-derived tumor xenografts. Cancer Res 75:2963–2968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chen B, Pogue BW, Hoopes PJ, Hasan T (2005) Combining vascular and cellular targeting regimens enhances the efficacy of photodynamic therapy. Int J Radiat Oncol Biol Phys 61:1216–1226

    Article  CAS  PubMed  Google Scholar 

  39. Rizvi I, Anbil S, Alagic N, Celli J, Zheng LZ, Palanisami A, Glidden MD, Pogue BW, Hasan T (2013) PDT dose parameters impact tumoricidal durability and cell death pathways in a 3D ovarian cancer model. Photochem Photobiol 89:942–952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rogers GS (2012) Continuous low-irradiance photodynamic therapy: a new therapeutic paradigm. J Natl Compr Cancer Netw 10(Suppl 2):S14–S17

    Article  CAS  Google Scholar 

  41. Ji Y, Powers SK, Brown JT, Walstad D, Maliner L (1994) Toxicity of photodynamic therapy with Photofrin in the normal rat brain. Lasers Surg Med 14:219–228

    Article  CAS  PubMed  Google Scholar 

  42. Xu M, Wang LV (2006) Photoacoustic imaging in biomedicine. Rev Sci Instrum 77:041101

    Article  CAS  Google Scholar 

  43. Glover GH (2011) Overview of functional magnetic resonance imaging. Neurosurg Clin 22:133–139

    Article  Google Scholar 

  44. Wang J, Maurer L (2005) Positron emission tomography: applications in drug discovery and drug development. Curr Trends Med Chem 5:1053–1075

    Article  CAS  Google Scholar 

  45. Sirsi S, Borden M (2009) Microbubble compositions, properties and biomedical applications. Bubble Sci Eng Technol 1:3–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fei B, Wang H, Muzic RF Jr, Flask C, Wilson DL, Duerk JL, Feyes DK, Oleinick NL (2006) Deformable and rigid registration of MRI and micro-PET images for photodynamic therapy of cancer in mice. Med Phys 33:753–760

    Article  PubMed  Google Scholar 

  47. Quinn KP, Sridharan GV, Hayden RS, Kaplan DL, Lee K, Georgakoudi I (2013) Quantitative metabolic imaging using endogenous fluorescence to detect stem cell differentiation. Sci Rep 3:3432

    Article  PubMed  PubMed Central  Google Scholar 

  48. Jerjes W, Upile T, Alexander Mosse C, Hamdoon Z, Morcos M, Morley S, Hopper C (2011) Prospective evaluation of 110 patients following ultrasound-guided photodynamic therapy for deep seated pathologies. Photodiagn Photodyn Ther 8:297–306

    Article  Google Scholar 

  49. Azzouzi AR, Barret E, Bennet J, Moore C, Taneja S, Muir G, Villers A, Coleman J, Allen C, Scherz A et al (2015) TOOKAD(R) soluble focal therapy: pooled analysis of three phase II studies assessing the minimally invasive ablation of localized prostate cancer. World J Urol 33:945–953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Huggett MT, Jermyn M, Gillams A, Illing R, Mosse S, Novelli M, Kent E, Bown SG, Hasan T, Pogue BW et al (2014) Phase I/II study of verteporfin photodynamic therapy in locally advanced pancreatic cancer. Br J Cancer 110:1698–1704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge NIH grants K99CA215301 and R00CA215301 to Girgis Obaid, and P01CA084203 and S10 ODO1232601 to Tayyaba Hasan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Girgis Obaid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Obaid, G., Hasan, T. (2022). Subcutaneous Xenograft Models for Studying PDT In Vivo. In: Broekgaarden, M., Zhang, H., Korbelik, M., Hamblin, M.R., Heger, M. (eds) Photodynamic Therapy. Methods in Molecular Biology, vol 2451. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2099-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2099-1_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2098-4

  • Online ISBN: 978-1-0716-2099-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics