Skip to main content

Analysis of Thermogenesis Experiments with CalR

  • Protocol
  • First Online:
Brown Adipose Tissue

Abstract

Modern indirect calorimetry systems allow for high-frequency time series measurements of the factors affected by thermogenesis: energy intake and energy expenditure. These indirect calorimetry systems generate a flood of raw data recording oxygen consumption, carbon dioxide production, physical activity, and food intake among other factors. Analysis of these data requires time-consuming manual manipulation for formatting, data cleaning, quality control, and visualization. Beyond data handling, analyses of indirect calorimetry experiments require specialized statistical treatment to account for differential contributions of fat mass and lean mass to metabolic rates.

Here we describe how to use the software package CalR version 1.2, to analyze indirect calorimetry data from three examples of thermogenesis, cold exposure, adrenergic agonism, and hyperthyroidism in mice, by providing standardized methods for reproducible research. CalR is a free online tool with an easy-to-use graphical user interface to import data files from the Columbus Instruments’ CLAMS, Sable Systems’ Promethion, and TSE Systems’ PhenoMaster. Once loaded, CalR can quickly visualize experimental results and perform basic statistical analyses. We present a framework that standardizes the data structures and analyses of indirect calorimetry experiments to provide reusable and reproducible methods for the physiological data affecting body weight.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ferrannini E (1988) The theoretical bases of indirect calorimetry: a review. Metabolism 37(3):287–301

    Article  CAS  PubMed  Google Scholar 

  2. Lighton JR (2019) Measuring metabolic rates: a manual for scientists, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  3. Lusk G (1924) Animal calorimetory: analysis of the oxidation of mixtures of carbohydrate and fat. J Biol Chem 59:41–42

    Article  CAS  Google Scholar 

  4. Weir JB (1949) New methods for calculating metabolic rate with special reference to protein metabolism. J Physiol 109(1–2):1–9. https://doi.org/10.1113/jphysiol.1949.sp004363

    Article  PubMed  PubMed Central  Google Scholar 

  5. Škop V, Guo J, Liu N, Xiao C, Hall KD, Gavrilova O, Reitman ML (2020) Mouse thermoregulation: introducing the concept of the thermoneutral point. Cell Rep 31(2):107501

    Article  PubMed  PubMed Central  Google Scholar 

  6. Corrigan JK, Ramachandran D, He Y, Palmer CJ, Jurczak MJ, Chen R, Li B, Friedline RH, Kim JK, Ramsey JJ, Lantier L, McGuinness OP, Mouse Metabolic Phenotyping Center Energy Balance Working Group, Banks AS (2020) A big-data approach to understanding metabolic rate and response to obesity in laboratory mice. eLife 9:e53560. https://doi.org/10.7554/eLife.53560

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bachmanov AA, Reed DR, Beauchamp GK, Tordoff MG (2002) Food intake, water intake, and drinking spout side preference of 28 mouse strains. Behav Genet 32(6):435–443

    Article  PubMed  PubMed Central  Google Scholar 

  8. Chevalier C, Stojanović O, Colin Didier J, Suarez-Zamorano N, Tarallo V, Veyrat-Durebex C, Rigo D, Fabbiano S, Stevanović A, Hagemann S, Montet X, Seimbille Y, Zamboni N, Hapfelmeier S, Trajkovski M (2015) Gut microbiota orchestrates energy homeostasis during cold. Cell 163(6):1360–1374. https://doi.org/10.1016/j.cell.2015.11.004

    Article  CAS  PubMed  Google Scholar 

  9. Krisko TI, Nicholls HT, Bare CJ, Holman CD, Putzel GG, Jansen RS, Sun N, Rhee KY, Banks AS, Cohen DE (2020) Dissociation of adaptive thermogenesis from glucose homeostasis in microbiome-deficient mice. Cell Metab 31(3):592–604.e599. https://doi.org/10.1016/j.cmet.2020.01.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mavanji V, Teske JA, Billington CJ, Kotz CM (2013) Partial sleep deprivation by environmental noise increases food intake and body weight in obesity-resistant rats. Obesity 21(7):1396–1405

    Article  PubMed  Google Scholar 

  11. Parra-Vargas M, Ramon-Krauel M, Lerin C, Jimenez-Chillaron JC (2020) Size does matter: litter size strongly determines adult metabolism in rodents. Cell Metab 32(3):334–340

    Article  CAS  PubMed  Google Scholar 

  12. Wu Q, Suzuki M (2006) Parental obesity and overweight affect the body-fat accumulation in the offspring: the possible effect of a high-fat diet through epigenetic inheritance. Obes Rev 7(2):201–208

    Article  CAS  PubMed  Google Scholar 

  13. Alvarez-Crespo M, Csikasz RI, Martínez-Sánchez N, Diéguez C, Cannon B, Nedergaard J, López M (2016) Essential role of UCP1 modulating the central effects of thyroid hormones on energy balance. Mol Metab 5(4):271–282. https://doi.org/10.1016/j.molmet.2016.01.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. López M, Varela L, Vázquez MJ, Rodríguez-Cuenca S, González CR, Velagapudi VR, Morgan DA, Schoenmakers E, Agassandian K, Lage R (2010) Hypothalamic AMPK and fatty acid metabolism mediate thyroid regulation of energy balance. Nat Med 16(9):1001–1008

    Article  PubMed  PubMed Central  Google Scholar 

  15. Himms-Hagen J, Cui J, Danforth E Jr, Taatjes D, Lang S, Waters B, Claus T (1994) Effect of CL-316,243, a thermogenic beta 3-agonist, on energy balance and brown and white adipose tissues in rats. Am J Phys Regul Integr Comp Phys 266(4):R1371–R1382

    CAS  Google Scholar 

  16. Hemingway A (1963) Shivering. Physiol Rev 43(3):397–422

    Article  CAS  PubMed  Google Scholar 

  17. Soto JE, Burnett CM, Ten Eyck P, Abel ED, Grobe JL (2019) Comparison of the effects of high-fat diet on energy flux in mice using two multiplexed metabolic phenotyping systems. Obesity 27(5):793–802

    Article  CAS  PubMed  Google Scholar 

  18. Speakman J (2013) Measuring energy metabolism in the mouse—theoretical, practical, and analytical considerations. Front Physiol 4:34. https://doi.org/10.3389/fphys.2013.00034

    Article  PubMed  PubMed Central  Google Scholar 

  19. Even PC, Nadkarni NA (2012) Indirect calorimetry in laboratory mice and rats: principles, practical considerations, interpretation and perspectives. Am J Physiol Regul Integr Comp Physiol 303(5):R459–R476. https://doi.org/10.1152/ajpregu.00137.2012

    Article  CAS  PubMed  Google Scholar 

  20. Meyer CW, Reitmeir P, Tschöp MH (2015) Exploration of energy metabolism in the mouse using indirect calorimetry: measurement of daily energy expenditure (DEE) and basal metabolic rate (BMR). Curr Protocol Mouse Biol 5(3):205–222

    Article  Google Scholar 

  21. Ahlmann-Eltze C, Patil I (2021) Ggsignif: significance brackets for ‘ggplot2’

    Google Scholar 

  22. Attali D (2020) Colourpicker: a colour picker tool for shiny and for selecting colours in plots. R package, version 1.1.0. edn.

    Google Scholar 

  23. Attali D (2020) Shinyjs: easily improve the user experience of your shiny apps in seconds

    Google Scholar 

  24. Auguie B (2017) gridExtra: miscellaneous functions for “grid” graphics

    Google Scholar 

  25. Chang W, Cheng J, Allaire JJ, Sievert C, Schloerke B, Xie Y, Allen J, McPherson J, Dipert A, Borges B (2021) Shiny: web application framework for R

    Google Scholar 

  26. Cheng J, Sievert C (2021) Crosstalk: inter-widget interactivity for HTML widgets

    Google Scholar 

  27. Displayr (2020) flipTime: tools for manipulating dates and time series

    Google Scholar 

  28. Dowle M, Srinivasan A (2021) Data.table: extension of ‘data.frame’

    Google Scholar 

  29. Fox J, Weisberg S (2019) An R companion to applied regression, 3rd edn. Sage, Thousand Oaks

    Google Scholar 

  30. Harrell FE, With contributions from Charles D, others m (2021) Hmisc: Harrell miscellaneous

    Google Scholar 

  31. Sali A, Attali D (2020) Shinycssloaders: add loading animations to a ‘shiny’ output while it’s recalculating

    Google Scholar 

  32. Sarkar D (2008) Lattice: multivariate data visualization with R. Springer, New York

    Book  Google Scholar 

  33. Sievert C (2020) Interactive web-based data visualization with R, plotly, and shiny. Chapman and Hall/CRC, London

    Book  Google Scholar 

  34. Team R (2021) RStudio: integrated development environment for R. Boston

    Google Scholar 

  35. Team RC (2021) R: a language and environment for statistical computing. Vienna

    Google Scholar 

  36. Urbanek S (2013) Png: read and write PNG images

    Google Scholar 

  37. Vaidyanathan R, Xie Y, Allaire JJ, Cheng J, Sievert C, Russell K (2020) htmlwidgets: HTML Widgets for R

    Google Scholar 

  38. Wickham H (2011) The Split-apply-combine strategy for data analysis. J Stat Softw 40(1):1–29

    Article  Google Scholar 

  39. Wickham H (2016) ggplot2: elegant graphics for data analysis. Springer, New York

    Book  Google Scholar 

  40. Wickham H (2019) Stringr: simple, consistent wrappers for common string operations

    Google Scholar 

  41. Wickham H, François R, Henry L, Müller K (2021) Dplyr: a grammar of data manipulation

    Google Scholar 

  42. Wickham H, Pedersen TL (2019) Gtable: arrange ‘Grobs’ in tables. R package version 0.3.0 edn.

    Google Scholar 

  43. Wickham H, Pedersen TL (2019) Gtable: arrange ‘Grobs’ in tables

    Google Scholar 

  44. Wickham H, Seidel D (2020) Scales: scale functions for visualization

    Google Scholar 

  45. Zeileis A, Croissant Y (2010) Extended model formulas in R: multiple parts and multiple responses. J Stat Softw 34(1):1–13. https://doi.org/10.18637/jss.v034.i01M4-Citavi

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Randall Friedline and Jason Kim from UMass for help with generating the TSE export figure. Funding was provided to ASB by NIH DK107717, OD028635, and the Harvard Digestive Disease Center. We are grateful to the R programming team and those who have generously developed packages to assist others. The CalR analysis program has used many of these tools. [21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander S. Banks .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Cortopassi, M.D., Ramachandran, D., Rubio, W.B., Hochbaum, D., Sabatini, B.L., Banks, A.S. (2022). Analysis of Thermogenesis Experiments with CalR. In: Guertin, D.A., Wolfrum, C. (eds) Brown Adipose Tissue. Methods in Molecular Biology, vol 2448. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2087-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2087-8_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2086-1

  • Online ISBN: 978-1-0716-2087-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics