Skip to main content

Optogenetic Animal Models of Depression: From Mice to Men

  • Protocol
  • First Online:
Translational Research Methods for Major Depressive Disorder

Part of the book series: Neuromethods ((NM,volume 179))

  • 611 Accesses

Abstract

Optogenetics, the light-induced reversible control of specific neuronal ensembles, has revolutionized the circuit level analysis of depression, leading to the identification of relevant circuitries in several brain regions including—but not limited to—medial prefrontal cortex, ventral tegmental area, and nucleus accumbens in rodents. While it is still early to observe a direct translational utility, the continuous progress in optogenetic interrogation of specific neural populations has great potential for untangling the complex pathophysiology of depression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.who.int/news-room/fact-sheets/detail/depression retrieved in 03.04.2021

Abbreviations

5-HT:

5-Hydroxytryptamine

AAVs:

Adeno-associated viruses

ACC:

Anterior cingulate cortex

AD:

Antidepressant

AMY:

Amygdala

avBNST:

Anteroventral bed nuclei of the stria terminalis

BDNF:

Brain-derived neurotrophic factor

BLA:

Basolateral amygdala

BMA:

Basomedial amygdala

BNST:

Bed nucleus of the stria terminalis

CaMKIIa:

Ca2+/calmodulin-dependent protein kinase II

CCK:

Cholecystokinin

CCK-B:

Cholecystokinin-B receptor

CeA:

Central amygdala

ChR2:

Channelrhodopsin-2

CMS:

Chronic mild stress

CRF:

Corticotropin-releasing factor

CSDS:

Chronic social defeat stress

D1:

Dopamine 1

D2:

Dopamine 2

DA:

Dopamine

DG:

Dentate gyrus

Drd1:

Dopamine receptor 1

Drd2:

Dopamine receptor 2

DRN:

Dorsal raphe nucleus

EPM:

Elevated plus maze

FST:

Forced swim test

GABA:

Gamma-aminobutyric acid

GABA(A)Rs:

Gamma-aminobutyric acid A receptors

GluClR:

Glutamate-gated chloride channel receptor

HPA system:

Hypothalamus-pituitary-adrenal system

IL-PFC:

Infralimbic prefrontal cortex

ILT:

Intralaminar thalamus

LHb:

Lateral habenula

MDT:

Medial dorsal thalamus

mHb:

Medial habenula

mPFC:

Medial prefrontal cortex

MSNs:

Medium spiny neurons

NAc:

Nucleus accumbens

NMDAR:

N-Methyl-D-aspartate receptor

NSF:

Novelty-suppressed feeding test

PIT:

Pavlovian-to-instrumental transfer

PR:

Progressive ratio

PrL:

Prelimbic area

PVH:

Paraventricular hypothalamus

RMTg:

Rostromedial tegmental nucleus

RN:

Raphe nucleus

SDS:

Social defeat stress

SPT:

Sucrose preference test

SSDS:

Subthreshold social defeat stress

TST:

Tail suspension test

vGlut:

Vesicular glutamate transporter 2

vHipp:

Ventral hippocampus

vlPAG:

Ventrolateral periaqueductal gray

vmPFC:

Ventral medial prefrontal cortex

VP:

Ventral pallidum

vSTR:

Ventral striatum

VTA:

Ventral tegmental area

ΔFosB:

DeltaFosB

References

  1. James SL, Abate D, Abate KH, Abay SM, Abbafati C, Abbasi N et al (2018) Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the global burden of disease study 2017. Lancet 392:1789–1858

    Article  Google Scholar 

  2. Vos T, Barber RM, Bell B, Bertozzi-Villa A, Biryukov S, Bolliger I et al (2015) Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990–2013: a systematic analysis for the global burden of disease study 2013. Lancet 386:743–800

    Article  Google Scholar 

  3. Malhi GS, Mann JJ (2018) Depression. Lancet 392:2299–2312. https://doi.org/10.1016/S0140-6736(18)31948-2

    Article  PubMed  Google Scholar 

  4. Arslan A (2015) Genes, brains, and behavior: imaging genetics for neuropsychiatric disorders. J Neuropsychiatry Clin Neurosci 27:81–92

    Article  PubMed  Google Scholar 

  5. Arslan A (2018) Imaging genetics of schizophrenia in the post-GWAS era. Prog Neuro-Psychopharmacology Biol Psychiatry 80:155–165

    Article  CAS  Google Scholar 

  6. Coplan JD, Andrews MW, Rosenblum LA, Owens MJ, Friedman S, Gorman JM et al (1996) Persistent elevations of cerebrospinal fluid concentrations of corticotropin-releasing factor in adult nonhuman primates exposed to early-life stressors: implications for the pathophysiology of mood and anxiety disorders. Proc Natl Acad Sci U S A 93:1619–1623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Murphy BEP, Wolkowitz OM (1993) The pathophysiologic significance of hyperadrenocorticism: antiglucocorticoid strategies. Psychiatr Ann 23:682–690

    Article  Google Scholar 

  8. Saxe MD, Battaglia F, Wang JW, Malleret G, David DJ, Monckton JE et al (2006) Ablation of hippocampal neurogenesis impairs contextual fear conditioning and synaptic plasticity in the dentate gyrus. Proc Natl Acad Sci U S A 103:17501–17506. https://doi.org/10.1073/pnas.0607207103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S et al (2003) Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301:805–809. https://doi.org/10.1126/science.1083328

    Article  CAS  PubMed  Google Scholar 

  10. Luscher B, Shen Q, Sahir N (2011) The GABAergic deficit hypothesis of major depressive disorder. Mol Psychiatry 16:383–406

    Article  CAS  PubMed  Google Scholar 

  11. Inserra A, Rogers GB, Licinio J, Wong M (2018) The microbiota-inflammasome hypothesis of major depression. Bioessays 40:1800027

    Article  Google Scholar 

  12. Fava M, Davidson KG (1996) Definition and epidemiology of treatment-resistant depression. Psychiatr Clin North Am 19:179–200

    Article  CAS  PubMed  Google Scholar 

  13. Machado-Vieira R, Baumann J, Wheeler-Castillo C, Latov D, Henter ID, Salvadore G et al (2010) The timing of antidepressant effects: a comparison of diverse pharmacological and somatic treatments. Pharmaceuticals (Basel) 3:19–41

    Article  CAS  Google Scholar 

  14. Aydin O, Aydin PU, Arslan A (2019) Development of neuroimaging-based biomarkers in psychiatry. Adv Exp Med Biol 1192:159–195

    Article  CAS  PubMed  Google Scholar 

  15. Arslan A (2018) Application of neuroimaging in the diagnosis and treatment of depression. In: Understanding depression. Springer, pp 69–81

    Google Scholar 

  16. Unal Aydin P, Aydin O, Arslan A (2021) Genetic architecture of depression: Where do we stand now? Adv Exp Med Biol 1305:203–230

    Article  CAS  PubMed  Google Scholar 

  17. Kim Y-K, Park S-C (2021) An alternative approach to future diagnostic standards for major depressive disorder. Prog Neuro-Psychopharmacol Biol Psychiatry 105:110133

    Article  Google Scholar 

  18. Arslan A (2018) Mapping the schizophrenia genes by neuroimaging: the opportunities and the challenges. Int J Mol Sci 19:219

    Article  PubMed Central  Google Scholar 

  19. Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, Agarwal P et al (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–562

    Article  CAS  PubMed  Google Scholar 

  20. Nestler EJ, Hyman SE (2010) Animal models of neuropsychiatric disorders. Nat Neurosci 13:1161–1169. https://doi.org/10.1038/nn.2647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Barkus C (2013) Genetic mouse models of depression. Curr Top Behav Neurosci 14:55–78

    Article  CAS  PubMed  Google Scholar 

  22. Alexander B, Warner-Schmidt J, Eriksson TM, Tamminga C, Arango-Lievano M, Ghose S et al (2010) Reversal of depressed behaviors in mice by p11 gene therapy in the nucleus accumbens. Sci Transl Med 2:54ra76

    Article  PubMed  PubMed Central  Google Scholar 

  23. Chourbaji S, Gass P (2008) Glucocorticoid receptor transgenic mice as models for depression. Brain Res Rev 57:554–560

    Article  CAS  PubMed  Google Scholar 

  24. Wang YM, Xu F, Gainetdinov RR, Caron MG (1999) Genetic approaches to studying norepinephrine function: Knockout of the mouse norepinephrine transporter gene. Biol Psychiatry 46:1124–1130. https://doi.org/10.1016/s0006-3223(99)00245-0

    Article  CAS  PubMed  Google Scholar 

  25. Holmes A, Yang RJ, Murphy DL, Crawley JN (2002) Evaluation of antidepressant-related behavioral responses in mice lacking the serotonin transporter. Neuropsychopharmacology 27:914–923

    Article  CAS  PubMed  Google Scholar 

  26. Urani A, Chourbaji S, Gass P (2005) Mutant mouse models of depression: candidate genes and current mouse lines. Neurosci Biobehav Rev 29:805–828. https://doi.org/10.1016/j.neubiorev.2005.03.020

    Article  CAS  PubMed  Google Scholar 

  27. Perona MTG, Waters S, Hall FS, Sora I, Lesch KP, Murphy DL et al (2008) Animal models of depression in dopamine, serotonin, and norepinephrine transporter knockout mice: prominent effects of dopamine transporter deletions. Behav Pharmacol 19:566–574. https://doi.org/10.1097/FBP.0b013e32830cd80f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gallagher JJ, Zhang X, Hall FS, Uhl GR, Bearer EL, Jacobs RE (2013) Altered reward circuitry in the norepinephrine transporter knockout mouse. PLoS One 8:e57597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Stuber GD, Stamatakis AM, Kantak PA (2015) Considerations when using cre-driver rodent lines for studying ventral tegmental area circuitry. Neuron 85:439–445. https://doi.org/10.1016/j.neuron.2014.12.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu G, Wang Y, Zheng W, Cheng H, Zhou R (2019) P11 loss-of-function is associated with decreased cell proliferation and neurobehavioral disorders in mice. Int J Biol Sci 15:1383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wulff P, Goetz T, Leppä E, Linden AM, Renzi M, Swinny JD et al (2007) From synapse to behavior: rapid modulation of defined neuronal types with engineered GABAA receptors. Nat Neurosci 10:923–929. https://doi.org/10.1038/nn1927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sullivan PF, Neale MC, Kendler KS (2000) Genetic epidemiology of major depression: review and meta-analysis. Am J Psychiatry 157:1552–1562

    Article  CAS  PubMed  Google Scholar 

  33. Arslan A (2015) The complexity of mental disorders. Period Eng Nat Sci 3

    Google Scholar 

  34. Bosker FJ, Hartman CA, Nolte IM, Prins BP, Terpstra P, Posthuma D et al (2011) Poor replication of candidate genes for major depressive disorder using genome-wide association data. Mol Psychiatry 16:516–532

    Article  CAS  PubMed  Google Scholar 

  35. Wray NR, Pergadia ML, Blackwood DHR, Penninx B, Gordon SD, Nyholt DR et al (2012) Genome-wide association study of major depressive disorder: new results, meta-analysis, and lessons learned. Mol Psychiatry 17:36–48

    Article  CAS  PubMed  Google Scholar 

  36. Sullivan P, Andreassen OA, Anney RJL, Asherson P, Ashley-Koch A, Blackwood D et al (2012) Don’t give up on GWAS. Mol Psychiatry 17:2–3. https://doi.org/10.1038/mp.2011.94

    Article  CAS  PubMed  Google Scholar 

  37. Cai N, Bigdeli TB, Kretzschmar W, Li Y, Liang J, Song L et al (2015) Sparse whole-genome sequencing identifies two loci for major depressive disorder. Nature 523:588–591

    Article  CAS  Google Scholar 

  38. Vaquero A, Scher M, Erdjument-Bromage H, Tempst P, Serrano L, Reinberg D (2007) SIRT1 regulates the histone methyl-transferase SUV39H1 during heterochromatin formation. Nature 450:440–444

    Article  CAS  PubMed  Google Scholar 

  39. Yokoi F, Hiraishi H, Izuhara K (2003) Molecular cloning of a cDNA for the human phospholysine phosphohistidine inorganic pyrophosphate phosphatase. J Biochem 133:607–614

    Article  CAS  PubMed  Google Scholar 

  40. Okbay A, Baselmans BML, De Neve J-E, Turley P, Nivard MG, Fontana MA et al (2016) Genetic variants associated with subjective well-being, depressive symptoms, and neuroticism identified through genome-wide analyses. Nat Genet 48:624–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Direk N, Williams S, Smith JA, Ripke S, Air T, Amare AT et al (2017) An analysis of two genome-wide association meta-analyses identifies a new locus for broad depression phenotype. Biol Psychiatry 82:322–329

    Article  CAS  PubMed  Google Scholar 

  42. Hyde CL, Nagle MW, Tian C, Chen X, Paciga SA, Wendland JR et al (2016) Identification of 15 genetic loci associated with risk of major depression in individuals of European descent. Nat Genet 48:1031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Berman RM, Cappiello A, Anand A, Oren DA, Heninger GR, Charney DS et al (2000) Antidepressant effects of ketamine in depressed patients. Biol Psychiatry 47:351–354

    Article  CAS  PubMed  Google Scholar 

  44. Murrough JW, Iosifescu DV, Chang LC, Al Jurdi RK, Green CE, Perez AM et al (2013) Antidepressant efficacy of ketamine in treatment-resistant major depression: a two-site randomized controlled trial. Am J Psychiatry 170:1134–1142. https://doi.org/10.1176/appi.ajp.2013.13030392

    Article  PubMed  PubMed Central  Google Scholar 

  45. Fava M, Freeman MP, Flynn M, Judge H, Hoeppner BB, Cusin C et al (2020) Double-blind, placebo-controlled, dose-ranging trial of intravenous ketamine as adjunctive therapy in treatment-resistant depression (TRD). Mol Psychiatry 25:1592–1603

    Article  CAS  PubMed  Google Scholar 

  46. Zarate CA, Singh JB, Carlson PJ, Brutsche NE, Ameli R, Luckenbaugh DA et al (2006) A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry 63:856–864. https://doi.org/10.1001/archpsyc.63.8.856

    Article  CAS  PubMed  Google Scholar 

  47. Domino EF, Chodoff P, Corssen G (1965) Pharmacologic effects of CI-581, a new dissociative anesthetic, in man. Clin Pharmacol Ther 6:279–291

    Article  CAS  PubMed  Google Scholar 

  48. Na KS (2021) Kim YK, vol 104. Prog Neuro-Psychopharmacol Biol Psychiatry, Increased use of ketamine for the treatment of depression: benefits and concerns, p 110060

    Google Scholar 

  49. Hodgkin AL (1958) The Croonian lecture-ionic movements and electrical activity in giant nerve fibres. Proc R Soc London Ser B Biol Sci 148:1–37

    CAS  Google Scholar 

  50. Arslan A (2021) Extrasynaptic δ-subunit containing GABAA receptors. J Integr Neurosci 20:173–184

    Article  PubMed  Google Scholar 

  51. Goetz T, Arslan A, Wisden W, Wulff P (2007) GABAA receptors: structure and function in the basal ganglia. Prog Brain Res 160:21–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Arslan A (2015) Clustering of gamma-aminobutyric acid type A receptors. Period Eng Nat Sci 3

    Google Scholar 

  53. Lynagh T, Lynch JW (2010) An improved ivermectin-activated chloride channel receptor for inhibiting electrical activity in defined neuronal populations. J Biol Chem 285:14890–14897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Islam R, Keramidas A, Xu L, Durisic N, Sah P, Lynch JW (2016) Ivermectin-activated, cation-permeable glycine receptors for the chemogenetic control of neuronal excitation. ACS Chem Neurosci 7:1647–1657

    Article  CAS  PubMed  Google Scholar 

  55. Molday RS, Molday LL (1998) Molecular properties of the cGMP-gated channel of rod photoreceptors. Vision Res 38:1315–1323. https://doi.org/10.1016/s0042-6989(97)00409-4

    Article  CAS  PubMed  Google Scholar 

  56. Terakita A (2005) The opsins. Genome Biol 6:213. https://doi.org/10.1186/gb-2005-6-3-213

    Article  PubMed  PubMed Central  Google Scholar 

  57. Takahashi T, Yoshihara K, Watanabe M, Kubota M, Johnson R, Derguini F et al (1991) Photoisomerization of retinal at 13-ene is important for phototaxis of Chlamydomonas reinhardtii: simultaneous measurements of phototactic and photophobic responses. Biochem Biophys Res Commun 178:1273–1279

    Article  CAS  PubMed  Google Scholar 

  58. Hegemann P, Gärtner W, Uhl R (1991) All-trans retinal constitutes the functional chromophore in Chlamydomonas rhodopsin. Biophys J 60:1477–1489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hegemann P, Oesterhelt D, Steiner M (1985) The photocycle of the chloride pump halorhodopsin. I: Azidecatalyzed deprotonation of the chromophore is a side reaction of photocycle intermediates inactivating the pump. EMBO J 4:2347–2350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kalaidzidis IV, Kalaidzidis YL, Kaulen AD (1998) Flash-induced voltage changes in halorhodopsin from Natronobacterium pharaonis. FEBS Lett 427:59–63

    Article  CAS  PubMed  Google Scholar 

  61. Oesterhelt D, Stoeckenius W (1971) Rhodopsin-like protein from the purple membrane of Halobacterium halobium. Nat New Biol 233:149–152. https://doi.org/10.1038/newbio233149a0

    Article  CAS  PubMed  Google Scholar 

  62. Eisenbach M, Bakker EP, Korenstein R, Caplan SR (1976) Bacteriorhodopsin: biphasic kinetics of phototransients and of light-induced proton transfer by sub-bacterial Halobacterium halobium particles and by reconstituted liposomes. FEBS Lett 71:228–232

    Article  CAS  PubMed  Google Scholar 

  63. Matsuno-Yagi A, Mukohata Y (1977) Two possible roles of bacteriorhodopsin; a comparative study of strains of Halobacterium halobium differing in pigmentation. Biochem Biophys Res Commun 78:237–243. https://doi.org/10.1016/0006-291x(77)91245-1

    Article  CAS  PubMed  Google Scholar 

  64. Lanyi JK (1986) Halorhodopsin: a light-driven chloride ion pump. Annu Rev Biophys Biophys Chem 15:11–28

    Article  CAS  PubMed  Google Scholar 

  65. Naldini L, Blömer U, Gallay P, Ory D, Mulligan R, Gage FH et al (1996) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272:263–267. https://doi.org/10.1126/science.272.5259.263

    Article  CAS  PubMed  Google Scholar 

  66. Dull T, Zufferey R, Kelly M, Mandel RJ, Nguyen M, Trono D et al (1998) A third-generation lentivirus vector with a conditional packaging system. J Virol 72:8463–8471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wang X, McManus M (2009) Lentivirus production. J Vis Exp 32:1499. https://doi.org/10.3791/1499

    Article  Google Scholar 

  68. Watakabe A, Sadakane O, Hata K, Ohtsuka M, Takaji M, Yamamori T (2017) Application of viral vectors to the study of neural connectivities and neural circuits in the marmoset brain. Dev Neurobiol 77:354–372. https://doi.org/10.1002/dneu.22459

    Article  CAS  PubMed  Google Scholar 

  69. Kwon KY, Lee H-M, Ghovanloo M, Weber A, Li W (2015) Design, fabrication, and packaging of an integrated, wirelessly-powered optrode array for optogenetics application. Front Syst Neurosci 9:69

    Article  PubMed  PubMed Central  Google Scholar 

  70. Wang HX, Li M, Lee CM, Chakraborty S, Kim HW, Bao G et al (2017) CRISPR/Cas9-based genome editing for disease modeling and therapy: challenges and opportunities for nonviral delivery. Chem Rev 117:9874–9906. https://doi.org/10.1021/acs.chemrev.6b00799

    Article  CAS  PubMed  Google Scholar 

  71. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821. https://doi.org/10.1126/science.1225829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Niu Y, Shen B, Cui Y, Chen Y, Wang J, Wang L et al (2014) Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell 156:836–843. https://doi.org/10.1016/j.cell.2014.01.027

    Article  CAS  PubMed  Google Scholar 

  73. Cox DBT, Platt RJ, Zhang F (2015) Therapeutic genome editing: prospects and challenges. Nat Med 21:121–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Haas SA, Dettmer V, Cathomen T (2017) Therapeutic genome editing with engineered nucleases. Hamostaseologie 37:45–52

    Article  PubMed  Google Scholar 

  75. Nishimasu H, Ran FA, Hsu PD, Konermann S, Shehata SI, Dohmae N et al (2014) Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 156:935–949. https://doi.org/10.1016/j.cell.2014.02.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:1262–1278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Polstein LR, Gersbach CA (2015) A light-inducible CRISPR-Cas9 system for control of endogenous gene activation. Nat Chem Biol 11:198–200. https://doi.org/10.1038/nchembio.1753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Bubeck F, Hoffmann MD, Harteveld Z, Aschenbrenner S, Bietz A, Waldhauer MC et al (2018) Engineered anti-CRISPR proteins for optogenetic control of CRISPR–Cas9. Nat Methods 15:924–927

    Article  CAS  PubMed  Google Scholar 

  79. Hoffmann MD, Mathony J, Zu Belzen JU, Harteveld Z, Stengl C, Correia BE et al (2021) Optogenetic control of Neisseria meningitidis Cas9 genome editing using an engineered, light-switchable anti-CRISPR protein. Nucleic Acids Res 49(5):e29

    Article  CAS  PubMed  Google Scholar 

  80. Duman RS, Sanacora G, Krystal JH (2019) Altered connectivity in depression: GABA and glutamate neurotransmitter deficits and reversal by novel treatments. Neuron Elsevier 102:75–90

    Article  CAS  Google Scholar 

  81. Xu P, Chen A, Li Y, Xing X, Lu H (2019) Medial prefrontal cortex in neurological diseases. Physiol Genomics 51:432–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Fuchikami M, Thomas A, Liu R, Wohleb ES, Land BB, DiLeone RJ et al (2015) Optogenetic stimulation of infralimbic PFC reproduces ketamine’s rapid and sustained antidepressant actions. Proc Natl Acad Sci U S A 112:8106–8111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Covington HE, Lobo MK, Maze I, Vialou V, Hyman JM, Zaman S et al (2010) Antidepressant effect of optogenetic stimulation of the medial prefrontal cortex. J Neurosci 30:16082–16090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kumar S, Black SJ, Hultman R, Szabo ST, Demaio KD, Du J et al (2013) Cortical control of affective networks. J Neurosci 33:1116–1129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Son H, Baek JH, Go BS, Jung D-H, Sontakke SB, Chung HJ et al (2018) Glutamine has antidepressive effects through increments of glutamate and glutamine levels and glutamatergic activity in the medial prefrontal cortex. Neuropharmacology 143:143–152

    Article  CAS  PubMed  Google Scholar 

  86. Warden MR, Selimbeyoglu A, Mirzabekov JJ, Lo M, Thompson KR, Kim SY et al (2012) A prefrontal cortex-brainstem neuronal projection that controls response to behavioural challenge. Nature 492:428–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Hare BD, Duman RS (2020) Prefrontal cortex circuits in depression and anxiety: contribution of discrete neuronal populations and target regions. Mol Psychiatry 25:2742–2758

    Article  PubMed  PubMed Central  Google Scholar 

  88. Hare BD, Shinohara R, Liu RJ, Pothula S, DiLeone RJ, Duman RS (2019) Optogenetic stimulation of medial prefrontal cortex Drd1 neurons produces rapid and long-lasting antidepressant effects. Nat Commun 10:1–12. https://doi.org/10.1038/s41467-018-08168-9

    Article  CAS  Google Scholar 

  89. Felix-Ortiz AC, Burgos-Robles A, Bhagat ND, Leppla CA, Tye KM (2016) Bidirectional modulation of anxiety-related and social behaviors by amygdala projections to the medial prefrontal cortex. Neuroscience 321:197–209

    Article  CAS  PubMed  Google Scholar 

  90. Liu RJ, Ota KT, Dutheil S, Duman RS, Aghajanian GK (2015) Ketamine strengthens CRF-activated amygdala inputs to basal dendrites in mPFC layer v pyramidal cells in the prelimbic but not infralimbic subregion, a key suppressor of stress responses. Neuropsychopharmacology 40:2066–2075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Carreno FR, Donegan JJ, Boley AM, Shah A, DeGuzman M, Frazer A et al (2016) Activation of a ventral hippocampus-medial prefrontal cortex pathway is both necessary and sufficient for an antidepressant response to ketamine. Mol Psychiatry 21:1298–1308

    Article  CAS  PubMed  Google Scholar 

  92. Carlson D, David LK, Gallagher NM, Vu MAT, Shirley M, Hultman R et al (2017) Dynamically timed stimulation of corticolimbic circuitry activates a stress-compensatory pathway. Biol Psychiatry 82:904–913

    Article  PubMed  PubMed Central  Google Scholar 

  93. Chaudhury D, Walsh JJ, Friedman AK, Juarez B, Ku SM, Koo JW et al (2013) Rapid regulation of depression-related behaviours by control of midbrain dopamine neurons. Nature 493:532–536

    Article  CAS  PubMed  Google Scholar 

  94. Venzala E, García-García AL, Elizalde N, Tordera RM (2013) Social vs. environmental stress models of depression from a behavioural and neurochemical approach. Eur Neuropsychopharmacol 23:697–708

    Article  CAS  PubMed  Google Scholar 

  95. Tanaka K, Furuyashiki T, Kitaoka S, Senzai Y, Imoto Y, Segi-Nishida E et al (2012) Prostaglandin E 2-mediated attenuation of mesocortical dopaminergic pathway is critical for susceptibility to repeated social defeat stress in mice. J Neurosci 32:4319–4329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Shinohara R, Taniguchi M, Ehrlich AT, Yokogawa K, Deguchi Y, Cherasse Y et al (2018) Dopamine D1 receptor subtype mediates acute stress-induced dendritic growth in excitatory neurons of the medial prefrontal cortex and contributes to suppression of stress susceptibility in mice. Mol Psychiatry 23:1717–1730

    Article  CAS  PubMed  Google Scholar 

  97. Tye KM, Mirzabekov JJ, Warden MR, Ferenczi EA, Tsai HC, Finkelstein J et al (2013) Dopamine neurons modulate neural encoding and expression of depression-related behaviour. Nature 493:537–541

    Article  CAS  PubMed  Google Scholar 

  98. Fakhoury M (2021) Optogenetics: a revolutionary approach for the study of depression. Prog Neuro Psychopharmacol Biol Psychiatry 106:110094

    Article  CAS  Google Scholar 

  99. Friedman AK, Walsh JJ, Juarez B, Ku SM, Chaudhury D, Wang J et al (2014) Enhancing depression mechanisms in midbrain dopamine neurons achieves homeostatic resilience. Science 344:313–319. https://doi.org/10.1126/science.1249240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Francis TC, Chandra R, Friend DM, Finkel E, Dayrit G, Miranda J et al (2015) Nucleus accumbens medium spiny neuron subtypes mediate depression-related outcomes to social defeat stress. Biol Psychiatry 77:212–222

    Article  PubMed  Google Scholar 

  101. Christoffel DJ, Golden SA, Walsh JJ, Guise KG, Heshmati M, Friedman AK et al (2015) Excitatory transmission at thalamo-striatal synapses mediates susceptibility to social stress. Nat Neurosci 18:962–964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Soares-Cunha C, Coimbra B, David-Pereira A, Borges S, Pinto L, Costa P et al (2016) Activation of D2 dopamine receptor-expressing neurons in the nucleus accumbens increases motivation. Nat Commun 7:11829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Bagot RC, Parise EM, Peña CJ, Zhang HX, Maze I, Chaudhury D et al (2015) Ventral hippocampal afferents to the nucleus accumbens regulate susceptibility to depression. Nat Commun 6:7062

    Article  CAS  PubMed  Google Scholar 

  104. Walsh EC, Eisenlohr-Moul TA, Minkel J, Bizzell J, Petty C, Crowther A et al (2019) Pretreatment brain connectivity during positive emotion upregulation predicts decreased anhedonia following behavioral activation therapy for depression. J Affect Disord 243:188–192

    Article  PubMed  Google Scholar 

  105. Walsh JJ, Friedman AK, Sun H, Heller EA, Ku SM, Juarez B et al (2014) Stress and CRF gate neural activation of BDNF in the mesolimbic reward pathway. Nat Neurosci 17:27–29

    Article  CAS  PubMed  Google Scholar 

  106. Vialou V, Bagot RC, Cahill ME, Ferguson D, Robison AJ, Dietz DM et al (2014) Prefrontal cortical circuit for depression- and anxiety-related behaviors mediated by cholecystokinin: role of ΔFosB. J Neurosci 34:3878–3887

    Article  PubMed  PubMed Central  Google Scholar 

  107. Zhang X, Abdellaoui A, Rucker J, de Jong S, Potash JB, Weissman MM et al (2019) Genome-wide burden of rare short deletions is enriched in major depressive disorder in four cohorts. Biol Psychiatry 85:1065–1073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Knowland D, Lilascharoen V, Pacia CP, Shin S, Wang EHJ, Lim BK (2017) Distinct ventral pallidal neural populations mediate separate symptoms of depression. Cell 170:284–297.e18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Wook Koo J, Labonté B, Engmann O, Calipari ES, Juarez B, Lorsch Z et al (2016) Essential role of mesolimbic brain-derived neurotrophic factor in chronic social stress–induced depressive behaviors. Biol Psychiatry 80:469–478

    Article  PubMed  Google Scholar 

  110. Ohmura Y, Tsutsui-Kimura I, Sasamori H, Nebuka M, Nishitani N, Tanaka KF et al (2020) Different roles of distinct serotonergic pathways in anxiety-like behavior, antidepressant-like, and anti-impulsive effects. Neuropharmacology 167:107703

    Article  CAS  PubMed  Google Scholar 

  111. Fakhoury M (2017) The habenula in psychiatric disorders: More than three decades of translational investigation. Neurosci Biobehav Rev 83:721–735

    Article  PubMed  Google Scholar 

  112. Matsumoto M, Hikosaka O (2009) Representation of negative motivational value in the primate lateral habenula. Nat Neurosci 12:77–84

    Article  CAS  PubMed  Google Scholar 

  113. Proulx CD, Aronson S, Milivojevic D, Molina C, Loi A, Monk B et al (2018) A neural pathway controlling motivation to exert effort. Proc Natl Acad Sci U S A 115:5792–5797. https://doi.org/10.1073/pnas.1801837115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Albert PR, Benkelfat C, Descarries L (2012) The neurobiology of depression-revisiting the serotonin hypothesis. I. Cellular and molecular mechanisms. Philos Trans R Soc Lond B Biol Sci 367:2378–2381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Adell A (2015) Revisiting the role of raphe and serotonin in neuropsychiatric disorders. J Gen Physiol 145:257–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Fakhoury M (2016) Revisiting the serotonin hypothesis: implications for major depressive disorders. Mol Neurobiol 53:2778–2786

    Article  CAS  PubMed  Google Scholar 

  117. Challis C, Beck SG, Berton O (2014) Optogenetic modulation of descending prefrontocortical inputs to the dorsal raphe bidirectionally bias socioaffective choices after social defeat. Front Behav Neurosci 8:43. https://doi.org/10.3389/fnbeh.2014.00043

    Article  PubMed  PubMed Central  Google Scholar 

  118. Zhang H, Li K, Chen HS, Gao SQ, Xia ZX, Zhang JT et al (2018) Dorsal raphe projection inhibits the excitatory inputs on lateral habenula and alleviates depressive behaviors in rats. Brain Struct Funct 223:2243–2258

    Article  CAS  PubMed  Google Scholar 

  119. Ramirez S, Liu X, MacDonald CJ, Moffa A, Zhou J, Redondo RL et al (2015) Activating positive memory engrams suppresses depression-like behaviour. Nature 522:335–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Johnson SB, Emmons EB, Anderson RM, Glanz RM, Romig-Martin SA, Narayanan NS et al (2016) A basal forebrain site coordinates the modulation of endocrine and behavioral stress responses via divergent neural pathways. J Neurosci 36:8687–8699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Cai YQ, Wang W, Paulucci-Holthauzen A, Pan ZZ (2018) Brain circuits mediating opposing effects on emotion and pain. J Neurosci 38:6340–6349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Phelps EA, LeDoux JE (2005) Contributions of the amygdala to emotion processing: from animal models to human behavior. Neuron 48:175–187

    Article  CAS  PubMed  Google Scholar 

  123. Crestani C, Alves F, Gomes F, Resstel L, Correa F, Herman J (2013) Mechanisms in the bed nucleus of the Stria terminalis involved in control of autonomic and neuroendocrine functions: a review. Curr Neuropharmacol 11:141–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Chapin JC, Monahan PH (2018) Gene Therapy for Hemophilia: Progress to Date

    Google Scholar 

  125. Jean, Bennett Jennifer, Wellman Kathleen A, Marshall Sarah, McCague Manzar, Ashtari Julie, DiStefano-Pappas Okan U, Elci Daniel C, Chung Junwei, Sun J Fraser, Wright Dominique R, Cross Puya, Aravand Laura L, Cyckowski Jeannette L, Bennicelli Federico, Mingozzi Alberto, Auricchio Eric A, Pierce Jason, Ruggiero Bart P, Leroy Francesca, Simonelli Katherine A, High Albert M, Maguire (2016) Safety and durability of effect of contralateral-eye administration of AAV2 gene therapy in patients with childhood-onset blindness caused by RPE65 mutations: a follow-on phase 1 trial. The Lancet 388(10045):661–672. https://doi.org/10.1016/S0140-6736(16)30371-3

  126. Naso MF, Tomkowicz B, Perry WL, Strohl WR (2017) Adeno-Associated Virus (AAV) as a vector for gene therapy. BioDrugs 31(4):317–334. https://doi.org/10.1007/s40259-017-0234-5

  127. Joshi J, Rubart M, Zhu W (2020) Optogenetics: background, methodological advances and potential applications for cardiovascular research and medicine. Front Bioeng Biotechnol 7:466

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayla Arslan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Arslan, A., Unal-Aydin, P., Dogan, T., Aydin, O. (2022). Optogenetic Animal Models of Depression: From Mice to Men. In: Kim, YK., Amidfar, M. (eds) Translational Research Methods for Major Depressive Disorder. Neuromethods, vol 179. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2083-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2083-0_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2082-3

  • Online ISBN: 978-1-0716-2083-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics