Skip to main content

Ketamine and Other Glutamate Receptor Antagonists As Fast-Actin

  • Protocol
  • First Online:
Translational Research Methods for Major Depressive Disorder

Part of the book series: Neuromethods ((NM,volume 179))

  • 567 Accesses

Abstract

The glutamate hypothesis of depression was prominently emerging in this decade. Evidence has shown that low-dose ketamine infusion or intranasal S-ketamine spray exhibited a prominent and rapid antidepressant and antisuicidal effect. A single infusion of 0.5 mg/kg ketamine may achieve up to 70% treatment response in Caucasian patients with treatment-resistant depression (TRD), but only approximately 50% in Taiwanese patients with TRD. The BDNF release and AMPA receptor upregulation via the blockade of NMDA receptor by low-dose ketamine result in the synaptogenesis and neuroplasticity modulation, which may explain the rapid antidepressant effect of low-dose ketamine. Clinical and biological markers, such as depression severity, body mass index, subjective feeling during infusion, and prefrontal cortex (PFC) and anterior cingulate cortex (ACC) functioning, may predict the treatment response of low-dose ketamine infusion. The 18F-FDG-PET studies found that a short activation in the PFC engendered by ketamine infusion may work as a kindler, facilitating the persistent increase in glucose metabolism in the dorsal ACC, which may further explain the outcome that the antidepressant effects of a single infusion of ketamine may be approximately 2 weeks. In recent years, whether several potential glutamate receptor antagonists/modulators, including R-ketamine, ketamine metabolites (i.e., hydroxynorketamine), lanicemine, and D-cycloserine, may also have a fast-acting antidepressant effect is still being studied. However, the exact neuromechanisms of the rapid antidepressant and antisuicidal effects of low-dose ketamine and intranasal S-ketamine spray in the TRD may go beyond the current evidence, which needs further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moore JD, Bona JR (2001) Depression and dysthymia. Med Clin North Am 85:631–644

    Article  CAS  PubMed  Google Scholar 

  2. Lim GY, Tam WW, Lu Y, Ho CS, Zhang MW, Ho RC (2018) Prevalence of depression in the community from 30 countries between 1994 and 2014. Sci Rep 8:2861

    Article  PubMed  PubMed Central  Google Scholar 

  3. Charlson F, van Ommeren M, Flaxman A, Cornett J, Whiteford H, Saxena S (2019) New WHO prevalence estimates of mental disorders in conflict settings: a systematic review and meta-analysis. Lancet 394:240–248

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ferrari AJ, Charlson FJ, Norman RE, Patten SB, Freedman G, Murray CJ, Vos T, Whiteford HA (2013) Burden of depressive disorders by country, sex, age, and year: findings from the global burden of disease study 2010. PLoS Med 10:e1001547

    Article  PubMed  PubMed Central  Google Scholar 

  5. Weinberger AH, Gbedemah M, Martinez AM, Nash D, Galea S, Goodwin RD (2018) Trends in depression prevalence in the USA from 2005 to 2015: widening disparities in vulnerable groups. Psychol Med 48:1308–1315

    Article  CAS  PubMed  Google Scholar 

  6. India State-Level Disease Burden Initiative Mental Disorders Collaborators (2020) The burden of mental disorders across the states of India: the global burden of disease study 1990-2017. Lancet Psychiatry 7:148–161

    Article  Google Scholar 

  7. Fu TS, Lee CS, Gunnell D, Lee WC, Cheng AT (2013) Changing trends in the prevalence of common mental disorders in Taiwan: a 20-year repeated cross-sectional survey. Lancet 381:235–241

    Article  PubMed  Google Scholar 

  8. Ettman CK, Abdalla SM, Cohen GH, Sampson L, Vivier PM, Galea S (2020) Prevalence of depression symptoms in US adults before and during the COVID-19 pandemic. JAMA Netw Open 3:e2019686

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bueno-Notivol J, Gracia-Garcia P, Olaya B, Lasheras I, Lopez-Anton R, Santabarbara J (2021) Prevalence of depression during the COVID-19 outbreak: a meta-analysis of community-based studies. Int J Clin Health Psychol 21:100196

    Article  PubMed  Google Scholar 

  10. Lopez-Munoz F, Alamo C (2009) Monoaminergic neurotransmission: the history of the discovery of antidepressants from 1950s until today. Curr Pharm Des 15:1563–1586

    Article  CAS  PubMed  Google Scholar 

  11. Wong DT, Perry KW, Bymaster FP (2005) Case history: the discovery of fluoxetine hydrochloride (Prozac). Nat Rev Drug Discov 4:764–774

    Article  CAS  PubMed  Google Scholar 

  12. Hirschfeld RM (2000) History and evolution of the monoamine hypothesis of depression. J Clin Psychiatry 61(Suppl 6):4–6

    CAS  PubMed  Google Scholar 

  13. Harmer CJ, Duman RS, Cowen PJ (2017) How do antidepressants work? New perspectives for refining future treatment approaches. Lancet Psychiatry 4:409–418

    Article  PubMed  PubMed Central  Google Scholar 

  14. Harmer CJ, Goodwin GM, Cowen PJ (2009) Why do antidepressants take so long to work? A cognitive neuropsychological model of antidepressant drug action. Br J Psychiatry 195:102–108

    Article  PubMed  Google Scholar 

  15. Taylor C, Fricker AD, Devi LA, Gomes I (2005) Mechanisms of action of antidepressants: from neurotransmitter systems to signaling pathways. Cell Signal 17:549–557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Koelle MR (2018) Neurotransmitter signaling through heterotrimeric G proteins: insights from studies in C. elegans. WormBook 2018:1–52

    Article  PubMed  Google Scholar 

  17. Trumpp-Kallmeyer S, Hoflack J, Bruinvels A, Hibert M (1992) Modeling of G-protein-coupled receptors: application to dopamine, adrenaline, serotonin, acetylcholine, and mammalian opsin receptors. J Med Chem 35:3448–3462

    Article  CAS  PubMed  Google Scholar 

  18. Kadriu B, Musazzi L, Henter ID, Graves M, Popoli M, Zarate CA Jr (2019) Glutamatergic neurotransmission: pathway to developing novel rapid-acting antidepressant treatments. Int J Neuropsychopharmacol 22:119–135

    Article  CAS  PubMed  Google Scholar 

  19. Pinheiro PS, Mulle C (2008) Presynaptic glutamate receptors: physiological functions and mechanisms of action. Nat Rev Neurosci 9:423–436

    Article  CAS  PubMed  Google Scholar 

  20. Niciu MJ, Kelmendi B, Sanacora G (2012) Overview of glutamatergic neurotransmission in the nervous system. Pharmacol Biochem Behav 100:656–664

    Article  CAS  PubMed  Google Scholar 

  21. Park M, Niciu MJ, Zarate CA Jr (2015) Novel glutamatergic treatments for severe mood disorders. Curr Behav Neurosci Rep 2:198–208

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kannampalli P, Sengupta JN (2015) Role of principal ionotropic and metabotropic receptors in visceral pain. J Neurogastroenterol Motil 21:147–158

    Article  PubMed  PubMed Central  Google Scholar 

  23. Moriguchi S, Takamiya A, Noda Y, Horita N, Wada M, Tsugawa S, Plitman E, Sano Y, Tarumi R, ElSalhy M, Katayama N, Ogyu K, Miyazaki T, Kishimoto T, Graff-Guerrero A, Meyer JH, Blumberger DM, Daskalakis ZJ, Mimura M, Nakajima S (2019) Glutamatergic neurometabolite levels in major depressive disorder: a systematic review and meta-analysis of proton magnetic resonance spectroscopy studies. Mol Psychiatry 24:952–964

    Article  CAS  PubMed  Google Scholar 

  24. Sanacora G, Treccani G, Popoli M (2012) Towards a glutamate hypothesis of depression: an emerging frontier of neuropsychopharmacology for mood disorders. Neuropharmacology 62:63–77

    Article  CAS  PubMed  Google Scholar 

  25. Li CT, Yang KC, Lin WC (2018) Glutamatergic dysfunction and glutamatergic compounds for major psychiatric disorders: evidence from clinical neuroimaging studies. Front Psychiatry 9:767

    Article  PubMed  Google Scholar 

  26. Abdallah CG, Jiang L, De Feyter HM, Fasula M, Krystal JH, Rothman DL, Mason GF, Sanacora G (2014) Glutamate metabolism in major depressive disorder. Am J Psychiatry 171:1320–1327

    Article  PubMed  PubMed Central  Google Scholar 

  27. Lener MS, Niciu MJ, Ballard ED, Park M, Park LT, Nugent AC, Zarate CA Jr (2017) Glutamate and gamma-aminobutyric acid Systems in the Pathophysiology of major depression and antidepressant response to ketamine. Biol Psychiatry 81:886–897

    Article  CAS  PubMed  Google Scholar 

  28. Arnone D, Mumuni AN, Jauhar S, Condon B, Cavanagh J (2015) Indirect evidence of selective glial involvement in glutamate-based mechanisms of mood regulation in depression: meta-analysis of absolute prefrontal neuro-metabolic concentrations. Eur Neuropsychopharmacol 25:1109–1117

    Article  CAS  PubMed  Google Scholar 

  29. Auer DP, Putz B, Kraft E, Lipinski B, Schill J, Holsboer F (2000) Reduced glutamate in the anterior cingulate cortex in depression: an in vivo proton magnetic resonance spectroscopy study. Biol Psychiatry 47:305–313

    Article  CAS  PubMed  Google Scholar 

  30. Michael N, Erfurth A, Ohrmann P, Arolt V, Heindel W, Pfleiderer B (2003) Metabolic changes within the left dorsolateral prefrontal cortex occurring with electroconvulsive therapy in patients with treatment resistant unipolar depression. Psychol Med 33:1277–1284

    Article  CAS  PubMed  Google Scholar 

  31. Hasler G, van der Veen JW, Tumonis T, Meyers N, Shen J, Drevets WC (2007) Reduced prefrontal glutamate/glutamine and gamma-aminobutyric acid levels in major depression determined using proton magnetic resonance spectroscopy. Arch Gen Psychiatry 64:193–200

    Article  CAS  PubMed  Google Scholar 

  32. Lee PH, Perlis RH, Jung JY, Byrne EM, Rueckert E, Siburian R, Haddad S, Mayerfeld CE, Heath AC, Pergadia ML, Madden PA, Boomsma DI, Penninx BW, Sklar P, Martin NG, Wray NR, Purcell SM, Smoller JW (2012) Multi-locus genome-wide association analysis supports the role of glutamatergic synaptic transmission in the etiology of major depressive disorder. Transl Psychiatry 2:e184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Maddox VH, Godefroi EF, Parcell RF (1965) The synthesis of phencyclidine and other 1-Arylcyclohexylamines. J Med Chem 8:230–235

    Article  CAS  PubMed  Google Scholar 

  34. Mion G, Villevieille T (2013) Ketamine pharmacology: an update (pharmacodynamics and molecular aspects, recent findings). CNS Neurosci Ther 19:370–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kurdi MS, Theerth KA, Deva RS (2014) Ketamine: current applications in anesthesia, pain, and critical care. Anesth Essays Res 8:283–290

    Article  PubMed  PubMed Central  Google Scholar 

  36. Li L, Vlisides PE (2016) Ketamine: 50 years of modulating the mind. Front Hum Neurosci 10:612

    Article  PubMed  PubMed Central  Google Scholar 

  37. Domino EF (2010) Taming the ketamine tiger. 1965. Anesthesiology 113:678–684

    Article  PubMed  Google Scholar 

  38. Zanos P, Moaddel R, Morris PJ, Riggs LM, Highland JN, Georgiou P, Pereira EFR, Albuquerque EX, Thomas CJ, Zarate CA Jr, Gould TD (2018) Ketamine and ketamine metabolite pharmacology: insights into therapeutic mechanisms. Pharmacol Rev 70:621–660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kharasch ED, Labroo R (1992) Metabolism of ketamine stereoisomers by human liver microsomes. Anesthesiology 77:1201–1207

    Article  CAS  PubMed  Google Scholar 

  40. Hijazi Y, Boulieu R (2002) Contribution of CYP3A4, CYP2B6, and CYP2C9 isoforms to N-demethylation of ketamine in human liver microsomes. Drug Metab Dispos 30:853–858

    Article  CAS  PubMed  Google Scholar 

  41. Zhao X, Venkata SL, Moaddel R, Luckenbaugh DA, Brutsche NE, Ibrahim L, Zarate CA Jr, Mager DE, Wainer IW (2012) Simultaneous population pharmacokinetic modelling of ketamine and three major metabolites in patients with treatment-resistant bipolar depression. Br J Clin Pharmacol 74:304–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Berman RM, Cappiello A, Anand A, Oren DA, Heninger GR, Charney DS, Krystal JH (2000) Antidepressant effects of ketamine in depressed patients. Biol Psychiatry 47:351–354

    Article  CAS  PubMed  Google Scholar 

  43. Himmelseher S, Pfenninger E (1998) The clinical use of S-(+)-ketamine--a determination of its place. Anasthesiol Intensivmed Notfallmed Schmerzther 33:764–770

    Article  CAS  PubMed  Google Scholar 

  44. Han Y, Chen J, Zou D, Zheng P, Li Q, Wang H, Li P, Zhou X, Zhang Y, Liu Y, Xie P (2016) Efficacy of ketamine in the rapid treatment of major depressive disorder: a meta-analysis of randomized, double-blind, placebo-controlled studies. Neuropsychiatr Dis Treat 12:2859–2867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. McGirr A, Berlim MT, Bond DJ, Fleck MP, Yatham LN, Lam RW (2015) A systematic review and meta-analysis of randomized, double-blind, placebo-controlled trials of ketamine in the rapid treatment of major depressive episodes. Psychol Med 45:693–704

    Article  CAS  PubMed  Google Scholar 

  46. Coyle CM, Laws KR (2015) The use of ketamine as an antidepressant: a systematic review and meta-analysis. Hum Psychopharmacol 30:152–163

    Article  CAS  PubMed  Google Scholar 

  47. Bahji A, Vazquez GH, Zarate CA Jr (2021) Comparative efficacy of racemic ketamine and esketamine for depression: a systematic review and meta-analysis. J Affect Disord 278:542–555

    Article  CAS  PubMed  Google Scholar 

  48. Papakostas GI, Salloum NC, Hock RS, Jha MK, Murrough JW, Mathew SJ, Iosifescu DV, Fava M (2020) Efficacy of esketamine augmentation in major depressive disorder: a meta-analysis. J Clin Psychiatry 81:19r12889

    Article  PubMed  Google Scholar 

  49. Murrough JW, Iosifescu DV, Chang LC, Al Jurdi RK, Green CE, Perez AM, Iqbal S, Pillemer S, Foulkes A, Shah A, Charney DS, Mathew SJ (2013) Antidepressant efficacy of ketamine in treatment-resistant major depression: a two-site randomized controlled trial. Am J Psychiatry 170:1134–1142

    Article  PubMed  PubMed Central  Google Scholar 

  50. Wan LB, Levitch CF, Perez AM, Brallier JW, Iosifescu DV, Chang LC, Foulkes A, Mathew SJ, Charney DS, Murrough JW (2015) Ketamine safety and tolerability in clinical trials for treatment-resistant depression. J Clin Psychiatry 76:247–252

    Article  PubMed  Google Scholar 

  51. Zarate CA Jr, Brutsche N, Laje G, Luckenbaugh DA, Venkata SL, Ramamoorthy A, Moaddel R, Wainer IW (2012) Relationship of ketamine’s plasma metabolites with response, diagnosis, and side effects in major depression. Biol Psychiatry 72:331–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Su TP, Chen MH, Li CT, Lin WC, Hong CJ, Gueorguieva R, Tu PC, Bai YM, Cheng CM, Krystal JH (2017) Dose-related effects of adjunctive ketamine in Taiwanese patients with treatment-resistant depression. Neuropsychopharmacology 42(13):2482–2492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gratacos M, Gonzalez JR, Mercader JM, de Cid R, Urretavizcaya M, Estivill X (2007) Brain-derived neurotrophic factor Val66Met and psychiatric disorders: meta-analysis of case-control studies confirm association to substance-related disorders, eating disorders, and schizophrenia. Biol Psychiatry 61:911–922

    Article  CAS  PubMed  Google Scholar 

  54. Chen MH, Lin WC, Wu HJ, Cheng CM, Li CT, Hong CJ, Tu PC, Bai YM, Tsai SJ, Su TP (2019) Antisuicidal effect, BDNF Val66Met polymorphism, and low-dose ketamine infusion: reanalysis of adjunctive ketamine study of Taiwanese patients with treatment-resistant depression (AKSTP-TRD). J Affect Disord 251:162–169

    Article  CAS  PubMed  Google Scholar 

  55. Murrough JW, Soleimani L, DeWilde KE, Collins KA, Lapidus KA, Iacoviello BM, Lener M, Kautz M, Kim J, Stern JB, Price RB, Perez AM, Brallier JW, Rodriguez GJ, Goodman WK, Iosifescu DV, Charney DS (2015) Ketamine for rapid reduction of suicidal ideation: a randomized controlled trial. Psychol Med 45:3571–3580

    Article  CAS  PubMed  Google Scholar 

  56. Wilkinson ST, Ballard ED, Bloch MH, Mathew SJ, Murrough JW, Feder A, Sos P, Wang G, Zarate CA Jr, Sanacora G (2018) The effect of a single dose of intravenous ketamine on suicidal ideation: a systematic review and individual participant data meta-analysis. Am J Psychiatry 175:150–158

    Article  PubMed  Google Scholar 

  57. McIntyre RS, Rodrigues NB, Lee Y, Lipsitz O, Subramaniapillai M, Gill H, Nasri F, Majeed A, Lui LMW, Senyk O, Phan L, Carvalho IP, Siegel A, Mansur RB, Brietzke E, Kratiuk K, Arekapudi AK, Abrishami A, Chau EH, Szpejda W, Rosenblat JD (2020) The effectiveness of repeated intravenous ketamine on depressive symptoms, suicidal ideation and functional disability in adults with major depressive disorder and bipolar disorder: results from the Canadian rapid treatment Center of Excellence. J Affect Disord 274:903–910

    Article  CAS  PubMed  Google Scholar 

  58. Lipsitz O, McIntyre RS, Rodrigues NB, Kaster TS, Cha DS, Brietzke E, Gill H, Nasri F, Lin K, Subramaniapillai M, Kratiuk K, Teopiz K, Lui LMW, Lee Y, Ho R, Shekotikhina M, Mansur RB, Rosenblat JD (2020) Early symptomatic improvements as a predictor of response to repeated-dose intravenous ketamine: results from the Canadian rapid treatment Center of Excellence. Prog Neuro-Psychopharmacol Biol Psychiatry 105:110126

    Article  Google Scholar 

  59. Shiroma PR, Thuras P, Wels J, Albott CS, Erbes C, Tye S, Lim KO (2020) A randomized, double-blind, active placebo-controlled study of efficacy, safety, and durability of repeated vs single subanesthetic ketamine for treatment-resistant depression. Transl Psychiatry 10:206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Phillips JL, Norris S, Talbot J, Hatchard T, Ortiz A, Birmingham M, Owoeye O, Batten LA, Blier P (2020) Single and repeated ketamine infusions for reduction of suicidal ideation in treatment-resistant depression. Neuropsychopharmacology 45:606–612

    Article  CAS  PubMed  Google Scholar 

  61. Phillips JL, Norris S, Talbot J, Birmingham M, Hatchard T, Ortiz A, Owoeye O, Batten LA, Blier P (2019) Single, repeated, and maintenance ketamine infusions for treatment-resistant depression: a randomized controlled trial. Am J Psychiatry 176:401–409

    Article  PubMed  Google Scholar 

  62. Popova V, Daly EJ, Trivedi M, Cooper K, Lane R, Lim P, Mazzucco C, Hough D, Thase ME, Shelton RC, Molero P, Vieta E, Bajbouj M, Manji H, Drevets WC, Singh JB (2019) Efficacy and safety of flexibly dosed Esketamine nasal spray combined with a newly initiated Oral antidepressant in treatment-resistant depression: a randomized double-blind active-controlled study. Am J Psychiatry 176:428–438

    Article  PubMed  Google Scholar 

  63. Daly EJ, Singh JB, Fedgchin M, Cooper K, Lim P, Shelton RC, Thase ME, Winokur A, Van Nueten L, Manji H, Drevets WC (2018) Efficacy and safety of intranasal Esketamine adjunctive to Oral antidepressant therapy in treatment-resistant depression: a randomized clinical trial. JAMA Psychiatry 75:139–148

    Article  PubMed  Google Scholar 

  64. Fu DJ, Ionescu DF, Li X, Lane R, Lim P, Sanacora G, Hough D, Manji H, Drevets WC, Canuso CM (2020) Esketamine nasal spray for rapid reduction of major depressive disorder symptoms in patients who have active suicidal ideation with intent: double-blind, randomized study (ASPIRE I). J Clin Psychiatry 81:19m13191

    Article  PubMed  Google Scholar 

  65. Ionescu DF, Fu DJ, Qiu X, Lane R, Lim P, Kasper S, Hough D, Drevets WC, Manji H, Canuso CM (2020) Esketamine nasal spray for rapid reduction of depressive symptoms in patients with major depressive disorder who have active suicide ideation with intent: results of a phase 3, double-blind, randomized study (ASPIRE II). Int J Neuropsychopharmacol 24(1):22–31

    Article  PubMed Central  Google Scholar 

  66. Aleksandrova LR, Wang YT, Phillips AG (2017) Hydroxynorketamine: implications for the NMDA receptor hypothesis of Ketamine’s antidepressant action. Chronic Stress (Thousand Oaks) 1:2470547017743511

    Google Scholar 

  67. Lener MS, Kadriu B, Zarate CA Jr (2017) Ketamine and beyond: investigations into the potential of glutamatergic agents to treat depression. Drugs 77:381–401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zanos P, Gould TD (2018) Intracellular signaling pathways involved in (S)- and (R)-ketamine antidepressant actions. Biol Psychiatry 83:2–4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Miller OH, Moran JT, Hall BJ (2016) Two cellular hypotheses explaining the initiation of ketamine's antidepressant actions: direct inhibition and disinhibition. Neuropharmacology 100:17–26

    Article  CAS  PubMed  Google Scholar 

  70. Lipton JO, Sahin M (2014) The neurology of mTOR. Neuron 84:275–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hay N, Sonenberg N (2004) Upstream and downstream of mTOR. Genes Dev 18:1926–1945

    Article  CAS  PubMed  Google Scholar 

  72. Holmes SE, Scheinost D, Finnema SJ, Naganawa M, Davis MT, DellaGioia N, Nabulsi N, Matuskey D, Angarita GA, Pietrzak RH, Duman RS, Sanacora G, Krystal JH, Carson RE, Esterlis I (2019) Lower synaptic density is associated with depression severity and network alterations. Nat Commun 10:1529

    Article  PubMed  PubMed Central  Google Scholar 

  73. Groc L, Choquet D (2020) Linking glutamate receptor movements and synapse function. Science 368:eaay4631

    Article  CAS  PubMed  Google Scholar 

  74. Chen MH, Wu HJ, Li CT, Lin WC, Bai YM, Tsai SJ, Hong CJ, Tu PC, Cheng CM, Su TP (2020) Using classification and regression tree modelling to investigate treatment response to a single low-dose ketamine infusion: post hoc pooled analyses of randomized placebo-controlled and open-label trials. J Affect Disord 281:865–871

    Article  PubMed  Google Scholar 

  75. Chen MH, Lin WC, Wu HJ, Bai YM, Li CT, Tsai SJ, Hong CJ, Tu PC, Cheng CM, Su TP (2020) Efficacy of low-dose ketamine infusion in anxious vs nonanxious depression: revisiting the adjunctive ketamine study of Taiwanese patients with treatment-resistant depression. CNS Spectr 26(4):362–367

    Article  PubMed  Google Scholar 

  76. Niciu MJ, Luckenbaugh DA, Ionescu DF, Guevara S, Machado-Vieira R, Richards EM, Brutsche NE, Nolan NM, Zarate CA Jr (2014) Clinical predictors of ketamine response in treatment-resistant major depression. J Clin Psychiatry 75:e417–e423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Rong C, Park C, Rosenblat JD, Subramaniapillai M, Zuckerman H, Fus D, Lee YL, Pan Z, Brietzke E, Mansur RB, Cha DS, Lui LMW, McIntyre RS (2018) Predictors of response to ketamine in treatment resistant major depressive disorder and bipolar disorder. Int J Environ Res Public Health 15:771

    Article  PubMed Central  Google Scholar 

  78. Li CT, Chen MH, Juan CH, Huang HH, Chen LF, Hsieh JC, Tu PC, Bai YM, Tsai SJ, Lee YC, Su TP (2014) Efficacy of prefrontal theta-burst stimulation in refractory depression: a randomized sham-controlled study. Brain 137:2088–2098

    Article  PubMed  Google Scholar 

  79. Khan A, Leventhal RM, Khan SR, Brown WA (2002) Severity of depression and response to antidepressants and placebo: an analysis of the Food and Drug Administration database. J Clin Psychopharmacol 22:40–45

    Article  PubMed  Google Scholar 

  80. Naudet F, Maria AS, Falissard B (2011) Antidepressant response in major depressive disorder: a meta-regression comparison of randomized controlled trials and observational studies. PLoS One 6:e20811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Aust S, Gartner M, Basso L, Otte C, Wingenfeld K, Chae WR, Heuser-Collier I, Regen F, Cosma NC, van Hall F, Grimm S, Bajbouj M (2019) Anxiety during ketamine infusions is associated with negative treatment responses in major depressive disorder. Eur Neuropsychopharmacol 29:529–538

    Article  CAS  PubMed  Google Scholar 

  82. Pennybaker SJ, Niciu MJ, Luckenbaugh DA, Zarate CA (2017) Symptomatology and predictors of antidepressant efficacy in extended responders to a single ketamine infusion. J Affect Disord 208:560–566

    Article  CAS  PubMed  Google Scholar 

  83. Luckenbaugh DA, Niciu MJ, Ionescu DF, Nolan NM, Richards EM, Brutsche NE, Guevara S, Zarate CA (2014) Do the dissociative side effects of ketamine mediate its antidepressant effects? J Affect Disord 159:56–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Gaydos SJ, Kelley AM, Grandizio CM, Athy JR, Walters PL (2015) Comparison of the effects of ketamine and morphine on performance of representative military tasks. J Emerg Med 48:313–324

    Article  PubMed  Google Scholar 

  85. Medvedev ON, Landhuis CE (2018) Exploring constructs of Well-being, happiness and quality of life. PeerJ 6:e4903

    Article  PubMed  PubMed Central  Google Scholar 

  86. Nutt D, Demyttenaere K, Janka Z, Aarre T, Bourin M, Canonico PL, Carrasco JL, Stahl S (2007) The other face of depression, reduced positive affect: the role of catecholamines in causation and cure. J Psychopharmacol 21:461–471

    Article  CAS  PubMed  Google Scholar 

  87. Watson D, Clark LA, Carey G (1988) Positive and negative affectivity and their relation to anxiety and depressive disorders. J Abnorm Psychol 97:346–353

    Article  CAS  PubMed  Google Scholar 

  88. Chen MH, Lin WC, Wu HJ, Bai YM, Li CT, Tsai SJ, Hong CJ, Tu PC, Cheng CM, Su TP (2020) Happiness during low-dose ketamine infusion predicts treatment response: Reexploring the adjunctive ketamine study of Taiwanese patients with treatment-resistant depression. J Clin Psychiatry 81:20m13232

    Article  PubMed  Google Scholar 

  89. Milak MS, Rashid R, Dong Z, Kegeles LS, Grunebaum MF, Ogden RT, Lin X, Mulhern ST, Suckow RF, Cooper TB, Keilp JG, Mao X, Shungu DC, Mann JJ (2020) Assessment of relationship of ketamine dose with magnetic resonance spectroscopy of Glx and GABA responses in adults with major depression: a randomized clinical trial. JAMA Netw Open 3:e2013211

    Article  PubMed  PubMed Central  Google Scholar 

  90. Chen MH, Chang WC, Lin WC, Tu PC, Li CT, Bai YM, Tsai SJ, Huang WS, Su TP (2020) Functional dysconnectivity of frontal cortex to striatum predicts ketamine infusion response in treatment-resistant depression. Int J Neuropsychopharmacol 23(12):791–798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Gartner M, Aust S, Bajbouj M, Fan Y, Wingenfeld K, Otte C, Heuser-Collier I, Boker H, Hattenschwiler J, Seifritz E, Grimm S, Scheidegger M (2019) Functional connectivity between prefrontal cortex and subgenual cingulate predicts antidepressant effects of ketamine. Eur Neuropsychopharmacol 29:501–508

    Article  PubMed  Google Scholar 

  92. Sydnor VJ, Lyall AE, Cetin-Karayumak S, Cheung JC, Felicione JM, Akeju O, Shenton ME, Deckersbach T, Ionescu DF, Pasternak O, Cusin C, Kubicki M (2020) Studying pre-treatment and ketamine-induced changes in white matter microstructure in the context of ketamine's antidepressant effects. Transl Psychiatry 10:432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Herrera-Melendez A, Stippl A, Aust S, Scheidegger M, Seifritz E, Heuser-Collier I, Otte C, Bajbouj M, Grimm S, Gartner M (2020) Gray matter volume of rostral anterior cingulate cortex predicts rapid antidepressant response to ketamine. Eur Neuropsychopharmacol 43:63–70

    Article  PubMed  Google Scholar 

  94. Mkrtchian A, Evans JW, Kraus C, Yuan P, Kadriu B, Nugent AC, Roiser JP, Zarate CA Jr (2020) Ketamine modulates fronto-striatal circuitry in depressed and healthy individuals. Mol Psychiatry 26(7):3292–3301

    Article  PubMed  PubMed Central  Google Scholar 

  95. Hijazi Y, Bodonian C, Bolon M, Salord F, Boulieu R (2003) Pharmacokinetics and haemodynamics of ketamine in intensive care patients with brain or spinal cord injury. Br J Anaesth 90:155–160

    Article  CAS  PubMed  Google Scholar 

  96. Li CT, Chen MH, Lin WC, Hong CJ, Yang BH, Liu RS, Tu PC, Su TP (2016) The effects of low-dose ketamine on the prefrontal cortex and amygdala in treatment-resistant depression: a randomized controlled study. Hum Brain Mapp 37:1080–1090

    Article  PubMed  PubMed Central  Google Scholar 

  97. Chen MH, Li CT, Lin WC, Hong CJ, Tu PC, Bai YM, Cheng CM, Su TP (2018) Persistent antidepressant effect of low-dose ketamine and activation in the supplementary motor area and anterior cingulate cortex in treatment-resistant depression: a randomized control study. J Affect Disord 225:709–714

    Article  CAS  PubMed  Google Scholar 

  98. Nugent AC, Diazgranados N, Carlson PJ, Ibrahim L, Luckenbaugh DA, Brutsche N, Herscovitch P, Drevets WC, Zarate CA Jr (2014) Neural correlates of rapid antidepressant response to ketamine in bipolar disorder. Bipolar Disord 16:119–128

    Article  CAS  PubMed  Google Scholar 

  99. Lally N, Nugent AC, Luckenbaugh DA, Niciu MJ, Roiser JP, Zarate CA Jr (2015) Neural correlates of change in major depressive disorder anhedonia following open-label ketamine. J Psychopharmacol 29:596–607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Abdallah CG, De Feyter HM, Averill LA, Jiang L, Averill CL, Chowdhury GMI, Purohit P, de Graaf RA, Esterlis I, Juchem C, Pittman BP, Krystal JH, Rothman DL, Sanacora G, Mason GF (2018) The effects of ketamine on prefrontal glutamate neurotransmission in healthy and depressed subjects. Neuropsychopharmacology 43:2154–2160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Chou D (2020) Brain-derived neurotrophic factor in the ventrolateral periaqueductal gray contributes to (2R,6R)-hydroxynorketamine-mediated actions. Neuropharmacology 170:108068

    Article  CAS  PubMed  Google Scholar 

  102. Chen BK, Luna VM, LaGamma CT, Xu X, Deng SX, Suckow RF, Cooper TB, Shah A, Brachman RA, Mendez-David I, David DJ, Gardier AM, Landry DW, Denny CA (2020) Sex-specific neurobiological actions of prophylactic (R,S)-ketamine, (2R,6R)-hydroxynorketamine, and (2S,6S)-hydroxynorketamine. Neuropsychopharmacology 45:1545–1556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Abdallah CG (2020) (2R,6R)-Hydroxynorketamine (HNK) plasma level predicts poor antidepressant response: is this the end of the HNK pipeline? Neuropsychopharmacology 45:1245–1246

    Article  PubMed  PubMed Central  Google Scholar 

  104. Farmer CA, Gilbert JR, Moaddel R, George J, Adeojo L, Lovett J, Nugent AC, Kadriu B, Yuan P, Gould TD, Park LT, Zarate CA Jr (2020) Ketamine metabolites, clinical response, and gamma power in a randomized, placebo-controlled, crossover trial for treatment-resistant major depression. Neuropsychopharmacology 45:1398–1404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Yokoyama R, Higuchi M, Tanabe W, Tsukada S, Naito M, Yamaguchi T, Chen L, Kasai A, Seiriki K, Nakazawa T, Nakagawa S, Hashimoto K, Hashimoto H, Ago Y (2020) (S)-norketamine and (2S,6S)-hydroxynorketamine exert potent antidepressant-like effects in a chronic corticosterone-induced mouse model of depression. Pharmacol Biochem Behav 191:172876

    Article  CAS  PubMed  Google Scholar 

  106. Hare BD, Pothula S, DiLeone RJ, Duman RS (2020) Ketamine increases vmPFC activity: effects of (R)- and (S)-stereoisomers and (2R,6R)-hydroxynorketamine metabolite. Neuropharmacology 166:107947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Zanos P, Moaddel R, Morris PJ, Georgiou P, Fischell J, Elmer GI, Alkondon M, Yuan P, Pribut HJ, Singh NS, Dossou KS, Fang Y, Huang XP, Mayo CL, Wainer IW, Albuquerque EX, Thompson SM, Thomas CJ, Zarate CA Jr, Gould TD (2016) NMDAR inhibition-independent antidepressant actions of ketamine metabolites. Nature 533:481–486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Moaddel R, Abdrakhmanova G, Kozak J, Jozwiak K, Toll L, Jimenez L, Rosenberg A, Tran T, Xiao Y, Zarate CA, Wainer IW (2013) Sub-anesthetic concentrations of (R,S)-ketamine metabolites inhibit acetylcholine-evoked currents in alpha7 nicotinic acetylcholine receptors. Eur J Pharmacol 698:228–234

    Article  CAS  PubMed  Google Scholar 

  109. Grunebaum MF, Galfalvy HC, Choo TH, Parris MS, Burke AK, Suckow RF, Cooper TB, Mann JJ (2019) Ketamine metabolite pilot study in a suicidal depression trial. J Psychiatr Res 117:129–134

    Article  PubMed  PubMed Central  Google Scholar 

  110. Chen MH, Cheng CM, Gueorguieva R, Lin WC, Li CT, Hong CJ, Tu PC, Bai YM, Tsai SJ, Krystal JH, Su TP (2019) Maintenance of antidepressant and antisuicidal effects by D-cycloserine among patients with treatment-resistant depression who responded to low-dose ketamine infusion: a double-blind randomized placebo-control study. Neuropsychopharmacology 44:2112–2118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Saavedra JS, Garrett PI, Honeycutt SC, Peterson AM, White JW, Hillhouse TM (2020) Assessment of the rapid and sustained antidepressant-like effects of dextromethorphan in mice. Pharmacol Biochem Behav 197:173003

    Article  CAS  PubMed  Google Scholar 

  112. Murrough JW, Wade E, Sayed S, Ahle G, Kiraly DD, Welch A, Collins KA, Soleimani L, Iosifescu DV, Charney DS (2017) Dextromethorphan/quinidine pharmacotherapy in patients with treatment resistant depression: a proof of concept clinical trial. J Affect Disord 218:277–283

    Article  CAS  PubMed  Google Scholar 

  113. Zarate CA Jr, Mathews D, Ibrahim L, Chaves JF, Marquardt C, Ukoh I, Jolkovsky L, Brutsche NE, Smith MA, Luckenbaugh DA (2013) A randomized trial of a low-trapping nonselective N-methyl-D-aspartate channel blocker in major depression. Biol Psychiatry 74:257–264

    Article  CAS  PubMed  Google Scholar 

  114. Sanacora G, Johnson MR, Khan A, Atkinson SD, Riesenberg RR, Schronen JP, Burke MA, Zajecka JM, Barra L, Su HL, Posener JA, Bui KH, Quirk MC, Piser TM, Mathew SJ, Pathak S (2017) Adjunctive Lanicemine (AZD6765) in patients with major depressive disorder and history of inadequate response to antidepressants: a randomized, Placebo-Controlled Study. Neuropsychopharmacology 42:844–853

    Article  CAS  PubMed  Google Scholar 

  115. Ibrahim L, Diaz Granados N, Jolkovsky L, Brutsche N, Luckenbaugh DA, Herring WJ, Potter WZ, Zarate CA Jr (2012) A randomized, placebo-controlled, crossover pilot trial of the oral selective NR2B antagonist MK-0657 in patients with treatment-resistant major depressive disorder. J Clin Psychopharmacol 32:551–557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Nations KR, Bursi R, Dogterom P, Ereshefsky L, Gertsik L, Mant T, Schipper J (2012) Maximum tolerated dose evaluation of the AMPA modulator org 26576 in healthy volunteers and depressed patients: a summary and method analysis of bridging research in support of phase II dose selection. Drugs R D 12:127–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Nations KR, Dogterom P, Bursi R, Schipper J, Greenwald S, Zraket D, Gertsik L, Johnstone J, Lee A, Pande Y, Ruigt G, Ereshefsky L (2012) Examination of org 26576, an AMPA receptor positive allosteric modulator, in patients diagnosed with major depressive disorder: an exploratory, randomized, double-blind, placebo-controlled trial. J Psychopharmacol 26:1525–1539

    Article  CAS  PubMed  Google Scholar 

  118. Du J, Suzuki K, Wei Y, Wang Y, Blumenthal R, Chen Z, Falke C, Zarate CA Jr, Manji HK (2007) The anticonvulsants lamotrigine, riluzole, and valproate differentially regulate AMPA receptor membrane localization: relationship to clinical effects in mood disorders. Neuropsychopharmacology 32:793–802

    Article  CAS  PubMed  Google Scholar 

  119. Kishi T, Matsunaga S, Iwata N (2017) A meta-analysis of Memantine for depression. J Alzheimers Dis 57:113–121

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Mr I-Fan Hu, MA (Courtauld Institute of Art, University of London; National Taiwan University) for his friendship and support. Mr Hu declares no conflicts of interest. Funding source: The study was supported by grant from Taipei Veterans General Hospital (V106B-020, V107B-010, V107C-181, V108B-012), Yen Tjing Ling Medical Foundation (CI-110-30), and the Ministry of Science and Technology, Taiwan (107-2314-B-075-063-MY3, 108-2314-B-075 -037). The funding source had no role in any process of our study.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chen, MH., Su, TP., Tsai, SJ. (2022). Ketamine and Other Glutamate Receptor Antagonists As Fast-Actin. In: Kim, YK., Amidfar, M. (eds) Translational Research Methods for Major Depressive Disorder. Neuromethods, vol 179. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2083-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2083-0_19

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2082-3

  • Online ISBN: 978-1-0716-2083-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics