Skip to main content

Cytoplasmic Production of Nanobodies and Nanobody-Based Reagents by Co-Expression of Sulfhydryl Oxidase and DsbC Isomerase

  • Protocol
  • First Online:
Single-Domain Antibodies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2446))

Abstract

Nanobodies are stable molecules that can often fold correctly even in the absence of the disulfide bond(s) that stabilize their three-dimensional conformation. Nevertheless, some nanobodies require the formation of disulfide bonds, and therefore they are commonly expressed from vectors that promote their secretion into the oxidizing environment of the Escherichia coli periplasm. As an alternative, the bacterial cytoplasm can be an effective compartment for producing correctly folded nanobodies when sulfhydryl oxidase and disulfide-bond isomerase activities are co-expressed from a recombinant vector. The larger volume and wider chaperone/foldase availability of the cytoplasm enable the achievement of high yields of both nanobodies and nanobody-tag fusions, independently of their redox requirements. Among other examples, the protocol described here was used to successfully produce nanobody fusions with fluorescent proteins that do not fold correctly in the periplasm, nanobodies with Fc domains, and nanobodies containing free cysteine tags.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bradbury A, Plückthun A (2015) Reproducibility: standardize antibodies used in research. Nature 518:27–29

    Article  CAS  Google Scholar 

  2. de Marco A (2015) Recombinant antibody production evolves into multiple options aimed at yielding reagents suitable for application-specific needs. Microb Cell Fact 14:125

    Article  Google Scholar 

  3. Veggiani G, Giabbai B, Semrau MS et al (2020) Comparative analysis of fusion tags used to functionalize recombinant antibodies. Protein Expr Purif 166:105505

    Article  CAS  Google Scholar 

  4. de Marco A (2020) Recombinant expression of nanobodies and nanobody-derived immunoreagents. Protein Expr Purif 172:105645

    Article  Google Scholar 

  5. Traenkle B, Rothbauer U (2017) Under the microscope: single-domain antibodies for live-cell imaging and super-resolution microscopy. Front Immunol 8:1030

    Article  Google Scholar 

  6. Cramer K, Bolender AL, Stockmar I et al (2019) Visualization of bacterial protein complexes labeled with fluorescent proteins and nanobody binders for STED microscopy. Int J Mol Sci 20:3376

    Article  CAS  Google Scholar 

  7. Virant D, Traenkle B, Maier J et al (2018) A peptide tag-specific nanobody enables high-quality labeling for dSTORM imaging. Nat Commun 9:930

    Article  Google Scholar 

  8. De Tavernier E, Detalle L, Morizzo E et al (2016) High throughput combinatorial formatting of PcrV nanobodies for efficient potency improvement. J Biol Chem 291:15243–15255

    Article  Google Scholar 

  9. Vaidyanathan G, McDougald D, Choi J et al (2016) Preclinical evaluation of 18F-labeled anti-HER2 nanobody conjugates for imaging HER2 receptor expression by immuno-PET. J Nucl Med 57:967–973

    Article  CAS  Google Scholar 

  10. Krüwel T, Nevoltris D, Bode J et al (2016) In vivo detection of small tumour lesions by multi-pinhole SPECT applying a 99mTc-labelled nanobody targeting the epidermal growth factor receptor. Sci Rep 6:21834

    Google Scholar 

  11. Soler MA, Medagli B, Semrau MS et al (2019) A consensus protocol for the in silico optimisation of antibody fragments. Chem Commun 55:14043–14046

    Article  CAS  Google Scholar 

  12. Henry KA, Sulea T, van Faassen H et al (2016) A rational engineering strategy for designing protein A-binding camelid single-domain antibodies. PLoS One 11:e0163113

    Article  Google Scholar 

  13. Henry KA, Tanha J, Hussack G (2015) Identification of cross-reactive single-domain antibodies against serum albumin using next-generation DNA sequencing. Protein Eng Des Sel 28:379–383

    Article  CAS  Google Scholar 

  14. Nguyen VD, Hatahet F, Salo KE et al (2011) Pre-expression of a sulfhydryl oxidase significantly increases the yields of eukaryotic disulfide bond containing proteins expressed in the cytoplasm of E. coli. Microb Cell Fact 10:1

    Article  CAS  Google Scholar 

  15. Veggiani G, de Marco A (2011) Improved quantitative and qualitative production of single-domain intrabodies mediated by the co-expression of Erv1p sulfhydryl oxidase. Protein Expr Purif 79:111–114

    Article  CAS  Google Scholar 

  16. Bessette PH, Aslund F, Beckwith J et al (1999) Efficient folding of proteins with multiple disulfide bonds in the Escherichia coli cytoplasm. Proc Natl Acad Sci U S A 96:13703–13708

    Article  CAS  Google Scholar 

  17. Meiresonne NY, Consoli E, Mertens LMY et al (2019) Superfolder mTurquoise2ox optimized for the bacterial periplasm allows high efficiency in vivo FRET of cell division antibiotic targets. Mol Microbiol 111:1025–1038

    Article  CAS  Google Scholar 

  18. Djender S, Schneider A, Beugnet A et al (2014) Bacterial cytoplasm as an effective cell compartment for producing functional VHH-based affinity reagents and Camelidae IgG-like recombinant antibodies. Microb Cell Fact 13:140

    Article  Google Scholar 

  19. Ambrosetti E, Paoletti P, Bosco A et al (2017) Quantification of circulating cancer biomarkers via sensitive topographic measurements on single binder nanoarrays. ACS Omega 2:2618–2629

    Article  CAS  Google Scholar 

  20. Bernardinelli G, Oloketuyi S, Werner SF et al (2020) A compact nanobody-DNAzyme conjugate enables antigen detection and signal amplification. New Biotechnol 56:1–8

    Article  CAS  Google Scholar 

  21. Oloketuyi S, Mazzega E, Zavašnik J et al (2020) Electrochemical immunosensor functionalized with nanobodies for the detection of the toxic microalgae Alexandrium minutum using glassy carbon electrode modified with gold nanoparticles. Biosens Bioelectron 54:112052

    Article  Google Scholar 

  22. de Marco A (2007) Protocol for preparing proteins with improved solubility by co-expression with molecular chaperones in Escherichia coli. Nat Protocols 2:2632–2639

    Article  Google Scholar 

  23. de Marco A, Berrow N, Lebendiker M, Garcia-Alai M, Knauer SH, Lopez-Mendez B, Matagne A, Parret A, Remans K, Uebel S, Raynal B (2021) Quality control of protein reagents for the improvement of research data reproducibility. Nat Commun 12(1):2795

    Google Scholar 

  24. Capasso P, Aliprandi M, Ossolengo G et al (2009) Monodispersity of recombinant Cre recombinase correlates with its effectiveness in vivo. BMC Biotechnol 9:80

    Article  Google Scholar 

  25. Glasel JA (1995) Validity of nucleic acid purities monitored by 260nm/280nm absorbance ratios. Biotechniques 18:62–63

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ario de Marco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

de Marco, A. (2022). Cytoplasmic Production of Nanobodies and Nanobody-Based Reagents by Co-Expression of Sulfhydryl Oxidase and DsbC Isomerase. In: Hussack, G., Henry, K.A. (eds) Single-Domain Antibodies. Methods in Molecular Biology, vol 2446. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2075-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2075-5_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2074-8

  • Online ISBN: 978-1-0716-2075-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics