Skip to main content

Nanobody-Based GFP Traps to Study Protein Localization and Function in Developmental Biology

  • Protocol
  • First Online:
Single-Domain Antibodies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2446))

Abstract

Synthetic protein-binding tools based on anti-green fluorescent protein (GFP) nanobodies have recently emerged as useful resources to study developmental biology. By fusing GFP-targeting nanobodies to well-characterized protein domains residing in discrete sub-cellular locations, it is possible to directly and acutely manipulate the localization of GFP-tagged proteins-of-interest in a predictable manner. Here, we describe a detailed protocol for the application of nanobody-based GFP-binding tools, namely Morphotrap and GrabFP, to study the localization and function of extracellular and intracellular proteins in the Drosophila wing imaginal disc. Given the generality of these methods, they are easily applicable for use in other tissues and model organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Helma J, Cardoso MC, Muyldermans S et al (2015) Nanobodies and recombinant binders in cell biology. J Cell Biol 209:633–644

    Article  CAS  Google Scholar 

  2. Harmansa S, Hamaratoglu F, Affolter M et al (2015) Dpp spreading is required for medial but not for lateral wing disc growth. Nature 527:317–322

    Article  CAS  Google Scholar 

  3. Bieli D, Alborelli I, Harmansa S et al (2016) Development and application of functionalized protein binders in multicellular organisms. Int Rev Cell Mol Biol 325:181–213

    Article  CAS  Google Scholar 

  4. Kaiser PD, Maier J, Traenkle B et al (2014) Recent progress in generating intracellular functional antibody fragments to target and trace cellular components in living cells. Biochim Biophys Acta 1844:1933–1942

    Article  CAS  Google Scholar 

  5. Plückthun A (2015) Designed ankyrin repeat proteins (DARPins): Binding proteins for research, diagnostics, and therapy. Annu Rev Pharmacol Toxicol 55:489–511

    Article  Google Scholar 

  6. Aguilar G, Matsuda S, Vigano MA et al (2019) Using nanobodies to study protein function in developing organisms. Antibodies (Basel) 8:16

    Article  CAS  Google Scholar 

  7. Aguilar G, Vigano MA, Affolter M et al (2019) Reflections on the use of protein binders to study protein function in developmental biology. Wiley Interdiscip Rev Dev Biol 8:e356

    Article  Google Scholar 

  8. Saerens D, Pellis M, Loris R et al (2005) Identification of a universal VHH framework to graft non-canonical antigen-binding loops of camel single-domain antibodies. J Mol Biol 352:597–607

    Article  CAS  Google Scholar 

  9. Rothbauer U, Zolghadr K, Muyldermans S et al (2008) A versatile nanotrap for biochemical and functional studies with fluorescent fusion proteins. Mol Cell Proteomics 7:282–289

    Article  CAS  Google Scholar 

  10. Matsuda S, Harmansa S, Affolter M (2016) BMP morphogen gradients in flies. Cytokine Growth Factor Rev 27:119–127

    Article  CAS  Google Scholar 

  11. Matsuda S, Affolter M (2017) Dpp from the anterior stripe of cells is crucial for the growth of the Drosophila wing disc. eLife 6:e22319

    Article  Google Scholar 

  12. Harmansa S, Alborelli I, Bieli D et al (2017) A nanobody-based toolset to investigate the role of protein localization and dispersal in Drosophila. eLife 6:e22549

    Article  Google Scholar 

  13. Greenspan RJ (2004) Fly pushing: the theory and practice of Drosophila genetics, 2nd edn. CSHL Press, Cold Spring Harbor

    Google Scholar 

  14. Morin X, Daneman R, Zavortink M et al (2001) A protein trap strategy to detect GFP-tagged proteins expressed from their endogenous loci in Drosophila. Proc Natl Acad Sci U S A 98:15,050–15,055

    Article  CAS  Google Scholar 

  15. Kelso RJ, Buszczak M, Quiñones AT et al (2004) Flytrap, a database documenting a GFP protein-trap insertion screen in Drosophila melanogaster. Nucleic Acids Res 32:D418–D420

    Article  CAS  Google Scholar 

  16. Buszczak M, Paterno S, Lighthouse D et al (2007) The carnegie protein trap library: a versatile tool for Drosophila developmental studies. Genetics 175:1505–1531

    Article  CAS  Google Scholar 

  17. Asakawa K, Kawakami K (2009) The Tol2-mediated Gal4-UAS method for gene and enhancer trapping in zebrafish. Methods 49:275–281

    Article  CAS  Google Scholar 

  18. Kawakami K, Abe G, Asada T et al (2010) zTrap: Zebrafish gene trap and enhancer trap database. BMC Dev Biol 10:105

    Article  Google Scholar 

  19. Sarov M, Barz C, Jambor H et al (2016) A genome-wide resource for the analysis of protein localisation in Drosophila. eLife 5:e12068

    Article  Google Scholar 

  20. Ringrose L (2009) Transgenesis in Drosophila melanogaster. Methods Mol Biol 21:3–19

    Article  Google Scholar 

  21. Venken KJT, Bellen HJ (2007) Transgenesis upgrades for Drosophila melanogaster. Development 134:3571–3584

    Article  CAS  Google Scholar 

  22. Spratford CM, Kumar JP (2014) Dissection and immunostaining of imaginal discs from Drosophila melanogaster. J Vis Exp 91:51792

    Google Scholar 

  23. Blair SS (2007) Dissection of imaginal discs in Drosophila. Cold Spring Harb Protoc 2007:pdb.prot4794

    Article  Google Scholar 

  24. Matsuda, S., Schaefer, J.V., Mii, Y. et al. Asymmetric requirement of Dpp/BMP morphogen dispersal in the Drosophila wing disc. Nat Commun 12, 6435 (2021).

    Google Scholar 

  25. Vigano MA, Ell C-M, Kustermann MMM et al (2021) Protein manipulation using single copies of short peptide tags in cultured cells and in Drosophila melanogaster. Development 148:dev191700

    Article  CAS  Google Scholar 

  26. Yagi R, Mayer F, Basler K (2010) Refined LexA transactivators and their use in combination with the Drosophila Gal4 system. Proc Natl Acad Sci U S A 107:16,166–16,171

    Article  CAS  Google Scholar 

  27. Kanca O, Caussinus E, Denes AS et al (2014) Raeppli: a whole-tissue labeling tool for live imaging of Drosophila development. Development 141:472–480

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Affolter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Matsuda, S., Aguilar, G., Vigano, M.A., Affolter, M. (2022). Nanobody-Based GFP Traps to Study Protein Localization and Function in Developmental Biology. In: Hussack, G., Henry, K.A. (eds) Single-Domain Antibodies. Methods in Molecular Biology, vol 2446. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2075-5_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2075-5_30

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2074-8

  • Online ISBN: 978-1-0716-2075-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics