Skip to main content

Humanization of Camelid Single-Domain Antibodies

  • Protocol
  • First Online:
Single-Domain Antibodies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2446))

Abstract

Humanization of therapeutic antibodies derived from animal immunizations is often required to minimize immunogenicity risks in humans, which can cause potentially harmful and serious side effects and reduce antibody efficacy. Humanization is typically applied to conventional monoclonal antibodies derived in rodents as well as single-domain antibodies isolated from camelids and sharks (VHHs and VNARs). A streamlined protocol is described here for sequence humanization of camelid VHHs, which represent a promising biotherapeutic format with many desirable attributes. From human framework selection and complementarity-determining region grafting strategies to empirical scoring for prioritization of back-mutations, step-by-step instructions, and templates are provided along with bioinformatics resources to assist each step of the humanization process. Alternative approaches, warnings, and caveats are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. DeFrancesco L (2019) Drug pipeline 1Q19. Nat Biotechnol 37:579–580

    Article  CAS  PubMed  Google Scholar 

  2. Kaplon H, Muralidharan M, Schneider Z et al (2020) Antibodies to watch in 2020. MAbs 12:1703531

    Article  PubMed  Google Scholar 

  3. Lu RM, Hwang YC, Liu IJ et al (2020) Development of therapeutic antibodies for the treatment of diseases. J Biomed Sci 27:1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kang TH, Jung ST (2020) Reprogramming the constant region of immunoglobulin G subclasses for enhanced therapeutic potency against cancer. Biomolecules 10:382

    Article  CAS  PubMed Central  Google Scholar 

  5. Kohler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495–497

    Article  CAS  PubMed  Google Scholar 

  6. Little M, Kipriyanov SM, Le Gall F et al (2000) Of mice and men: hybridoma and recombinant antibodies. Immunol Today 21:364–370

    Article  CAS  PubMed  Google Scholar 

  7. Klee GG (2000) Human anti-mouse antibodies. Arch Pathol Lab Med 124:921–923

    Article  CAS  PubMed  Google Scholar 

  8. Gonzales NR, De Pascalis R, Schlom J et al (2005) Minimizing the immunogenicity of antibodies for clinical application. Tumour Biol 26:31–43

    Article  CAS  PubMed  Google Scholar 

  9. Safdari Y, Farajnia S, Asgharzadeh M et al (2013) Antibody humanization methods—a review and update. Biotechnol Genet Eng Rev 29:175–186

    Article  CAS  PubMed  Google Scholar 

  10. Riechmann L, Clark M, Waldmann H et al (1988) Reshaping human antibodies for therapy. Nature 332:323–327

    Article  CAS  PubMed  Google Scholar 

  11. Hwang WYK, Foote J (2005) Immunogenicity of engineered antibodies. Methods 36:3–10

    Article  CAS  PubMed  Google Scholar 

  12. Konning D, Zielonka S, Grzeschik J et al (2016) Camelid and shark single domain antibodies: structural features and therapeutic potential. Curr Opin Struct Biol 45:10–16

    Article  PubMed  Google Scholar 

  13. Desmyter A, Spinelli S, Roussel A et al (2015) Camelid nanobodies: killing two birds with one stone. Curr Opin Struct Biol 32:1–8

    Article  CAS  PubMed  Google Scholar 

  14. Hussack G, Hirama T, Ding W et al (2011) Engineered single-domain antibodies with high protease resistance and thermal stability. PLoS One 6:e28218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kijanka M, Dorresteijn B, Oliveira S et al (2015) Nanobody-based cancer therapy of solid tumors. Nanomedicine (Lond) 10:161–174

    Article  CAS  Google Scholar 

  16. Van Audenhove I, Gettemans J (2016) Nanobodies as versatile tools to understand, diagnose, visualize and treat cancer. EBioMedicine 8:40–48

    Article  PubMed  PubMed Central  Google Scholar 

  17. Morrison C (2019) Nanobody approval gives domain antibodies a boost. Nat Rev Drug Discov 18:485–487

    Article  CAS  PubMed  Google Scholar 

  18. Arbabi-Ghahroudi M (2017) Camelid single-domain antibodies: historical perspective and future outlook. Front Immunol 8:1589

    Article  PubMed  PubMed Central  Google Scholar 

  19. Vincke C, Loris R, Saerens D et al (2009) General strategy to humanize a camelid single-domain antibody and identification of a universal humanized nanobody scaffold. J Biol Chem 284:3273–3284

    Article  CAS  PubMed  Google Scholar 

  20. Lefranc MP, Giudicelli V, Duroux P et al (2015) IMGT®, the international ImMunoGeneTics information system® 25 years on. Nucleic Acids Res 43(Database issue):D413–D422

    Article  CAS  PubMed  Google Scholar 

  21. Katoh K, Rozewicki J, Yamada KD (2019) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform 20:1160–1166

    Article  CAS  PubMed  Google Scholar 

  22. Leem J, Dunbar J, Georges G et al (2016) ABodyBuilder: Sutomated antibody structure prediction with data-driven accuracy estimation. MAbs 8:1259–1268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wu TT, Kabat EA (1970) An analysis of the sequences of the variable regions of Bence Jones proteins and myeloma light chains and their implications for antibody complementarity. J Exp Med 132:211–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kabat EA, Wu TT (1991) Identical V region amino acid sequences and segments of sequences in antibodies of different specificities. Relative contributions of VH and VL genes, minigenes, and complementarity-determining regions to binding of antibody-combining sites. J Immunol 147:1709–1719

    CAS  PubMed  Google Scholar 

  25. Chothia C, Lesk AM (1987) Canonical structures for the hypervariable regions of immunoglobulins. J Mol Biol 196:901–917

    Article  CAS  PubMed  Google Scholar 

  26. Al-Lazikani B, Lesk AM, Chothia C (1997) Standard conformations for the canonical structures of immunoglobulins. J Mol Biol 273:927–948

    Article  CAS  PubMed  Google Scholar 

  27. Lefranc MP, Pommie C, Ruiz M et al (2003) IMGT unique numbering for immunoglobulin and T cell receptor variable domains and Ig superfamily V-like domains. Dev Comp Immunol 27:55–77

    Article  CAS  PubMed  Google Scholar 

  28. Deret S, Maissiat C, Aucouturier P et al (1995) SUBIM: a program for analysing the Kabat database and determining the variability subgroup of a new immunoglobulin sequence. Comput Appl Biosci 11:435–439

    CAS  PubMed  Google Scholar 

  29. Brochet X, Lefranc MP, Giudicelli V (2008) IMGT/V-QUEST: the highly customized and integrated system for IG and TR standardized V-J and V-D-J sequence analysis. Nucleic Acids Res 36(Web Server issue):W503–W508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Giudicelli V, Brochet X, Lefranc MP (2011) IMGT/V-QUEST: IMGT standardized analysis of the immunoglobulin (IG) and T cell receptor (TR) nucleotide sequences. Cold Spring Harb Protoc 6:695–715

    Google Scholar 

  31. Knappik A, Ge L, Honegger A et al (2000) Fully synthetic human combinatorial antibody libraries (HuCAL) based on modular consensus frameworks and CDRs randomized with trinucleotides. J Mol Biol 296:57–86

    Article  CAS  PubMed  Google Scholar 

  32. Abhinandan KR, Martin AC (2008) Analysis and improvements to Kabat and structurally correct numbering of antibody variable domains. Mol Immunol 45:3832–3839

    Article  CAS  PubMed  Google Scholar 

  33. Retter I, Althaus HH, Munch R et al (2005) VBASE2, an integrative V gene database. Nucleic Acids Res 33(Database issue):D671–D674

    Article  CAS  PubMed  Google Scholar 

  34. Dhanda SK, Grifoni A, Pham J et al (2018) Development of a strategy and computational application to select candidate protein analogues with reduced HLA binding and immunogenicity. Immunology 153:118–132

    Article  CAS  PubMed  Google Scholar 

  35. Pires DE, Ascher DB, Blundell TL (2014) mCSM: predicting the effects of mutations in proteins using graph-based signatures. Bioinformatics 30:335–342

    Article  CAS  PubMed  Google Scholar 

  36. van Faassen H, Ryan S, Henry KA et al (2020) Serum albumin-binding VHHs with variable pH sensitivities enable tailored half-life extension of biologics. FASEB J 34:8155–8171

    Article  PubMed  Google Scholar 

  37. Foote J, Winter G (1992) Antibody framework residues affecting the conformation of the hypervariable loops. J Mol Biol 224:487–499

    Article  CAS  PubMed  Google Scholar 

  38. Conrath K, Vincke C, Stijlemans B et al (2005) Antigen binding and solubility effects upon the veneering of a camel VHH in framework-2 to mimic a VH. J Mol Biol 350:112–125

    Article  CAS  PubMed  Google Scholar 

  39. Bond CJ, Wiesmann C, Marsters JC et al (2005) A structure-based database of antibody variable domain diversity. J Mol Biol 348:699–709

    Article  CAS  PubMed  Google Scholar 

  40. Sircar A, Sanni KA, Shi J et al (2011) Analysis and modeling of the variable region of camelid single-domain antibodies. J Immunol 186:6357–6367

    Article  CAS  PubMed  Google Scholar 

  41. Makabe K, Nakanishi T, Tsumoto K et al (2008) Thermodynamic consequences of mutations in vernier zone residues of a humanized anti-human epidermal growth factor receptor murine antibody, 528. J Biol Chem 283:1156–1166

    Article  CAS  PubMed  Google Scholar 

  42. Deschacht N, De Groeve K, Vincke C et al (2010) A novel promiscuous class of camelid single-domain antibody contributes to the antigen-binding repertoire. J Immunol 184:5696–5704

    Article  CAS  PubMed  Google Scholar 

  43. Kashmiri SV, De Pascalis R, Gonzales NR et al (2005) SDR grafting—a new approach to antibody humanization. Methods 36:25–34

    Article  CAS  PubMed  Google Scholar 

  44. Padlan EA (1991) A possible procedure for reducing the immunogenicity of antibody variable domains while preserving their ligand-binding properties. Mol Immunol 28:489–498

    Article  CAS  PubMed  Google Scholar 

  45. Henry KA, Sulea T, van Faassen H et al (2016) A rational engineering strategy for designing protein A-binding camelid single-domain antibodies. PLoS One 11:e0163113

    Article  PubMed  PubMed Central  Google Scholar 

  46. Graille M, Stura EA, Corper AL et al (2000) Crystal structure of a Staphylococcus aureus protein A domain complexed with the Fab fragment of a human IgM antibody: structural basis for recognition of B-cell receptors and superantigen activity. Proc Natl Acad Sci U S A 97:5399–5404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Traian Sulea .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Data 1

PyMOL session file (.pse) of the 3D structural model depicted in Fig. 2b. Editable formats of the figures are also made available. (PSE 266 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sulea, T. (2022). Humanization of Camelid Single-Domain Antibodies. In: Hussack, G., Henry, K.A. (eds) Single-Domain Antibodies. Methods in Molecular Biology, vol 2446. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2075-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2075-5_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2074-8

  • Online ISBN: 978-1-0716-2075-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics