Skip to main content

CRISPR-Cas9 Gene Editing to Generate Isoform-Specific LAMP-2A Knockout in Human Cancer Cells

  • Protocol
  • First Online:
Autophagy and Cancer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2445))

Abstract

Chaperone-mediated autophagy (CMA) is a highly specific lysosomal-dependent protein degradation pathway. A critical molecular component of CMA is the lysosome-associated membrane protein (LAMP) type 2A, which is required for substrate uptake by the lysosome. Defects in the CMA pathway have been associated with various human pathologies, including malignancies, increasing the overall interest in methods to monitor this selective autophagy process. Yet isogenic LAMP-2A knockout cancer cell models are still lacking. This is likely to depend on challenges related to that human LAMP-2 gene undergoes alternative splicing of its pre-mRNA, generating three isoform variants, LAMP-2A, LAMP-2B, and LAMP-2C. However, without assessment of the impact of LAMP-2A loss of function specifically in human cells, the involvement of CMA in human pathologies, including carcinogenesis remains speculative. Here, we describe the generation of isoform-specific CRISPR-Cas9 genomic editing of LAMP-2A in human cancer cells, without affecting the other two isoforms, allowing for experimental evaluation of LAMP-2A, thus CMA in human cancer models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mizushima N, Komatsu M (2011) Autophagy: renovation of cells and tissues. Cell 147(4):728–741

    Article  CAS  Google Scholar 

  2. Kaushik S, Cuervo AM (2018) The coming of age of chaperone-mediated autophagy. Nat Rev Mol Cell Biol 19(6):365–381

    Article  CAS  Google Scholar 

  3. Dice JF (2007) Chaperone-mediated autophagy. Autophagy 3(4):295–299

    Article  CAS  Google Scholar 

  4. Cuervo AM, Dice JF (1997) A receptor for the selective uptake and degradation of proteins by lysosomes. Science 273(5274):501–503

    Article  Google Scholar 

  5. Gough NR, Hatem CL, Fambrough DM (1995) The family of LAMP-2 proteins arises by alternative splicing from a single gene: characterization of the avian LAMP-2 gene and identification of mammalian homologs of LAMP-2b and LAMP-2c. DNA Cell Biol 14(10):863–867

    Article  CAS  Google Scholar 

  6. Andrade-Tomaz M, de Souza I, Rocha CRR, Gomes LR (2020) The role of chaperone-mediated autophagy in cell cycle control and its implications in cancer. Cell 9:2140

    Article  CAS  Google Scholar 

  7. Schneider JL, Villarroya J, Diaz-Carretero A, Patel B, Urbanska AM, Thi MM, Villarroya F, Santambrogio L, Cuervo AM (2015) Loss of hepatic chaperone-mediated autophagy accelerates proteostasis failure in aging. Aging Cell 14(2):249–264

    Article  CAS  Google Scholar 

  8. Kon M, Kiffin R, Koga H, Chapochnick J, Macian F, Varticovski L, Cuervo AM (2011) Chaperone-mediated autophagy is required for tumor growth. Sci Transl Med 3(109):109ra17

    Article  Google Scholar 

  9. Galan-Acosta L, Xia H, Yuan J, Vakifahmetoglu-Norberg H (2015) Activation of chaperone-mediated autophagy as a potential anticancer therapy. Autophagy 11(12):2370–2371

    Article  CAS  Google Scholar 

  10. Arias E, Cuervo AM (2020) Pros and cons of chaperone-mediated autophagy in cancer biology. Trends Endocrinol Metab 31(1):53–66

    Article  CAS  Google Scholar 

  11. Vakifahmetoglu-Norberg H, Kim M, Xia HG, Iwanicki MP, Ofengeim D, Coloff JL, Pan L, Ince TA, Kroemer G, Brugge JS, Yuan J (2013) Chaperone-mediated autophagy degrades mutant p53. Genes Dev 27(15):1718–1730

    Article  CAS  Google Scholar 

  12. Xia H-G, Najafov A, Geng J, Galan-Acosta L, Han X, Guo Y, Shan B, Zhang Y, Norberg E, Zhang T, Pan L, Liu J, Coloff JL, Ofengeim D, Zhu H, Wu K, Cai Y, Yates JR, Zhu Z, Yuan J, Vakifahmetoglu-Norberg H (2015) Degradation of HK2 by chaperone-mediated autophagy promotes metabolic catastrophe and cell death. J Cell Biol 210(5):705–716

    Article  CAS  Google Scholar 

  13. Hao Y, Kacal M, Ouchida AT, Zhang B, Norberg E, Vakifahmetoglu-Norberg H (2019) Targetome analysis of chaperone-mediated autophagy in cancer cells. Autophagy 15(9):1558–1571

    Article  CAS  Google Scholar 

  14. Kacal M, Zhang B, Hao Y, Norberg E, Vakifahmetoglu-Norberg H (2021) Quantitative proteomic analysis of temporal lysosomal proteome and the impact of the KFERQ-like motif and LAMP2A in lysosomal targeting. Autophagy 26:1–10

    Google Scholar 

  15. Wang H, La Russa M, Qi LS (2016) CRISPR Cas9 in genome editing and beyond. Annu Rev Biochem 85(1):227–264

    Article  CAS  Google Scholar 

  16. Musunuru K (2017) The hope and hype of CRISPR-Cas9 genome editing: a review. JAMA Cardiol 2(8):914–919

    Article  Google Scholar 

  17. Xu CF, Chen GJ, Luo YL, Zhang Y, Zhao G, Lu ZD, Czarna A, Gu Z, Wang J (2019) Rational designs of in vivo CRISPR-Cas delivery systems. Adv Drug Deliv Rev 168:3–29

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Karolinska Institutet, the Swedish Research Council (VR), Ragnar Söderberg Foundation, and Swedish Cancer Society (Cancerfonden). Special thanks to MSc. Merve Kacal for her help with technical and practical details for optimizing the procedure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helin Vakifahmetoglu-Norberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Yu, Tt., Zhou, X., Vakifahmetoglu-Norberg, H. (2022). CRISPR-Cas9 Gene Editing to Generate Isoform-Specific LAMP-2A Knockout in Human Cancer Cells. In: Norberg, H., Norberg, E. (eds) Autophagy and Cancer. Methods in Molecular Biology, vol 2445. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2071-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2071-7_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2070-0

  • Online ISBN: 978-1-0716-2071-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics