Skip to main content

Generation of Monoubiquitin and K63-Linked Polyubiquitin Chains for Protein Interaction Studies

  • Protocol
  • First Online:
DNA Damage Responses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2444))

  • 923 Accesses

Abstract

Ubiquitylation is a posttranslational modification that utilizes protein-protein binding interactions to regulate cellular processes. In ubiquitin signaling, a vast array of mono- and polyubiquitin modifications to substrate proteins are recognized by a diverse group of ubiquitin-binding proteins. Identifying ubiquitin-binding proteins and characterizing their binding properties is necessary for understanding the structural basis of ubiquitin signaling. This chapter provides a means of studying ubiquitin-binding interactions in vitro by describing how to generate monoubiquitin and K63-linked polyubiquitin chains and perform pull-down assays with ubiquitin-binding proteins, which is of particular relevance for DNA damage and other signaling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hurley JH, Lee S, Prag G (2006) Ubiquitin-binding domains. Biochem J 399:361–372. https://doi.org/10.1042/BJ20061138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Randles L, Walters KJ (2012) Ubiquitin and its binding domains. Front Biosci (Landmark Ed) 17:2140–2157. https://doi.org/10.2741/4042

    Article  CAS  Google Scholar 

  3. Akutsu M, Dikic I, Bremm A (2016) Ubiquitin chain diversity at a glance. J Cell Sci 129:875–880. https://doi.org/10.1242/jcs.183954

    Article  CAS  PubMed  Google Scholar 

  4. Komander D, Rape M (2012) The ubiquitin code. Annu Rev Biochem 81:203–229. https://doi.org/10.1146/annurev-biochem-060310-170328

    Article  CAS  PubMed  Google Scholar 

  5. Swatek KN, Komander D (2016) Ubiquitin modifications. Cell Res 26:399–422. https://doi.org/10.1038/cr.2016.39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Piotrowski J, Beal R, Hoffman L et al (1997) Inhibition of the 26 S proteasome by polyubiquitin chains synthesized to have defined lengths. J Biol Chem 272:23712–23721. https://doi.org/10.1074/jbc.272.38.23712

    Article  CAS  PubMed  Google Scholar 

  7. Berndsen CE, Wolberger C (2011) A spectrophotometric assay for conjugation of ubiquitin and ubiquitin-like proteins. Anal Biochem 418:102–110. https://doi.org/10.1016/j.ab.2011.06.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Berndsen CE, Wiener R, Yu IW et al (2013) A conserved asparagine has a structural role in ubiquitin-conjugating enzymes. Nat Chem Biol 9:154–156. https://doi.org/10.1038/nchembio.1159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pickart CM, Raasi S (2005) Controlled synthesis of polyubiquitin chains. Methods Enzymol 399:21–36. https://doi.org/10.1016/S0076-6879(05)99002-2

    Article  CAS  PubMed  Google Scholar 

  10. Sato Y, Yoshikawa A, Mimura H et al (2009) Structural basis for specific recognition of Lys 63-linked polyubiquitin chains by tandem UIMs of RAP80. EMBO J 28:2461–2468. https://doi.org/10.1038/emboj.2009.160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Brickner JR, Soll JM, Lombardi PM et al (2017) A ubiquitin-dependent signalling axis specific for ALKBH-mediated DNA dealkylation repair. Nature 551:389–393. https://doi.org/10.1038/nature24484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Michel MA, Komander D, Elliott PR (2018) Enzymatic assembly of ubiquitin chains. Methods Mol Biol 1844:73–84. https://doi.org/10.1007/978-1-4939-8706-1_6

    Article  CAS  PubMed  Google Scholar 

  13. Dong KC, Helgason E, Yu C et al (2011) Preparation of distinct ubiquitin chain reagents of high purity and yield. Structure 19:1053–1063. https://doi.org/10.1016/j.str.2011.06.010

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Research reported in this publication was supported by the National Institute of General Medical Sciences of the National Institutes of Health under Award Number R15GM140410. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick M. Lombardi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Anoh, R., Burke, K.A., Schmelyun, D.P., Lombardi, P.M. (2022). Generation of Monoubiquitin and K63-Linked Polyubiquitin Chains for Protein Interaction Studies. In: Mosammaparast, N. (eds) DNA Damage Responses. Methods in Molecular Biology, vol 2444. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2063-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2063-2_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2062-5

  • Online ISBN: 978-1-0716-2063-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics