Skip to main content

Quantitative Three-Dimensional Analysis of the Lymphatic Vasculature in the Postnatal Mouse Heart

  • Protocol
  • First Online:
Angiogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2441))

  • 2251 Accesses

Abstract

The development and maturation of the lymphatic vasculature are essential for organ function with disruption leading to severe phenotypes. For example, malfunction of cardiac lymphatics results in myocardial oedema, persistent inflammation and reduced cardiac output. Thus, it is important to study the process of cardiac lymphatic formation and growth from the early stages of fetal development to adulthood. In the murine heart the lymphatics continue to develop and expand postnatally with extensive growth and patterning occurring up to at least 2 weeks after birth. Here, we describe a protocol for whole-mount, multi-view imaging and quantification of lymphatic vessel parameters, including vessel junction number (i.e., branching density), vessel length, and number of vessel end points in the murine postnatal heart. This protocol is based on the use of reliable antibodies against key markers of lymphatic endothelial cells (LECs), specifically the glycoprotein lymphatic vessel endothelial hyaluronan receptor 1 (LYVE1), the vascular endothelial growth factor receptor 3 (VEGFR3; also known as Fms-related receptor tyrosine kinase 4, FLT4), the mucin-type protein podoplanin (PDPN), and the co-receptor neuropilin 2 (NRP2). For imaging and quantitative analysis of the sub-epicardial network in neonatal hearts, VEGFR3 was selected given its exclusive expression in the lymphatic endothelium. In addition to LECs, LYVE1 expression was detected in tissue-resident macrophages, PDPN in the epicardium, and NRP2 in the autonomic nervous system of the heart. Overall, we characterized the expression patterns of commonly used lymphatic markers in the context of the neonatal heart and provide an image analysis pipeline that can be adapted to study other organs and systems (e.g., blood vasculature and nerve system).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dongaonkar RM, Stewart RH, Geissler HJ, Laine GA (2010) Myocardial microvascular permeability, interstitial oedema, and compromised cardiac function. Cardiovasc Res 87:331–339

    Article  CAS  Google Scholar 

  2. Laine GA, Allen SJ (1991) Left ventricular myocardial edema. Lymph flow, interstitial fibrosis, and cardiac function. Circ Res 68:1713–1721

    Article  CAS  Google Scholar 

  3. Klaourakis K, Vieira JM, Riley PR (2021) The evolving cardiac lymphatic vasculature in development, repair and regeneration. Nat Rev Cardiol 18(5):368–379. https://doi.org/10.1038/s41569-020-00489-x

    Article  PubMed  PubMed Central  Google Scholar 

  4. Klotz L et al (2015) Cardiac lymphatics are heterogeneous in origin and respond to injury. Nature 522:62–67

    Article  CAS  Google Scholar 

  5. Cahill TJ et al (2021) Tissue-resident macrophages regulate lymphatic vessel growth and patterning in the developing heart. Development 148(3):dev194563. https://doi.org/10.1242/dev.194563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Juszyński M, Ciszek B, Stachurska E, Jabłońska A, Ratajska A (2008) Development of lymphatic vessels in mouse embryonic and early postnatal hearts. Dev Dyn 237:2973–2986

    Article  Google Scholar 

  7. Flaht-Zabost A et al (2014) Cardiac mouse lymphatics: developmental and anatomical update. Anat Rec 297:1115–1130

    Article  Google Scholar 

  8. Stone OA, Stainier DYR (2019) Paraxial mesoderm is the major source of lymphatic endothelium. Dev Cell 50:247–255.e3

    Article  CAS  Google Scholar 

  9. Maruyama K, Miyagawa-Tomita S, Mizukami K, Matsuzaki F, Kurihara H (2019) Isl1-expressing non-venous cell lineage contributes to cardiac lymphatic vessel development. Dev Biol 452:134–143

    Article  CAS  Google Scholar 

  10. Lioux G et al (2020) A second heart field-derived vasculogenic niche contributes to cardiac lymphatics. Dev Cell 52:350–363.e6

    Article  CAS  Google Scholar 

  11. Henri O et al (2016) Selective stimulation of cardiac lymphangiogenesis reduces myocardial edema and fibrosis leading to improved cardiac function following myocardial infarction. Circulation 133:1484–1497

    Article  CAS  Google Scholar 

  12. Houssari M et al (2020) Lymphatic and immune cell cross-talk regulates cardiac recovery after experimental myocardial infarction. Arterioscler Thromb Vasc Biol 40:1722–1737

    Article  CAS  Google Scholar 

  13. Vieira JM et al (2018) The cardiac lymphatic system stimulates resolution of inflammation following myocardial infarction. J Clin Invest 128:3402–3412

    Article  Google Scholar 

  14. Trincot CE et al (2019) Adrenomedullin induces cardiac lymphangiogenesis after myocardial infarction and regulates cardiac edema via Connexin 43. Circ Res 124:101–113

    Article  CAS  Google Scholar 

  15. Hartikainen J et al (2017) Adenoviral intramyocardial VEGF-DDNDC gene transfer increasesmyocardial perfusion reserve in refractory angina patients: a phase I/IIa study with 1-year follow-up. Eur Heart J 38:2547–2555

    Article  CAS  Google Scholar 

  16. Kataoka Y et al (2010) The first clinical pilot study of intravenous adrenomedullin administration in patients with acute myocardial infarction. J Cardiovasc Pharmacol 56:413–419

    Article  CAS  Google Scholar 

  17. Tatin F et al (2017) Apelin modulates pathological remodeling of lymphatic endothelium after myocardial infarction. JCI Insight 2:1–16

    Article  Google Scholar 

  18. Rueden CT et al (2017) ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinformatics 18:529

    Article  Google Scholar 

  19. Schindelin J et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682

    Article  CAS  Google Scholar 

  20. Zudaire E, Gambardella L, Kurcz C, Vermeren S (2011) A computational tool for quantitative analysis of vascular networks. PLoS One 6:e27385

    Article  CAS  Google Scholar 

  21. Kaipatnen A et al (1995) Expression of the fms-like tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during development. Med Sci 92(8):3566–3570

    Google Scholar 

  22. Maden CH et al (2012) NRP1 and NRP2 cooperate to regulate gangliogenesis, axon guidance and target innervation in the sympathetic nervous system. Dev Biol 369:277–285

    Article  CAS  Google Scholar 

  23. Yuan L et al (2002) Abnormal lymphatic vessel development in neuropilin 2 mutant mice. Development 129(20):4797–4806

    Article  CAS  Google Scholar 

  24. Mahtab EAF et al (2008) Cardiac malformations and myocardial abnormalities in Podoplanin knockout mouse embryos: correlation with abnormal epicardial development. Dev Dyn 237:847–857

    Article  CAS  Google Scholar 

  25. Risebro CA et al (2009) Prox1 maintains muscle structure and growth in the developing heart. Development 136:699

    Article  CAS  Google Scholar 

Download references

Acknowledgments

K.K. is funded by the Wellcome Trust Foundation (4-year PhD studentship 215103/Z/18/Z). J.M.V. is supported by a British Heart Foundation Intermediate Basic Science Research Fellowship (FS/19/31/34158). P.R.R. is supported by a British Heart Foundation chair award (CH/11/1/28798) and programme grant (RG/08/003/25264). We thank the Micron Oxford Advanced Bioimaging Unit for access to and training in the use of light-sheet microscopy: https://micronoxford.com.

Competing Interests

P.R.R. is co-founder and equity holder in OxStem Cardio, an Oxford University spin-out that seeks to exploit therapeutic strategies stimulating endogenous repair in cardiovascular regenerative medicine. The other authors declare no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Paul R. Riley or Joaquim Miguel Vieira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Klaourakis, K., Riley, P.R., Vieira, J.M. (2022). Quantitative Three-Dimensional Analysis of the Lymphatic Vasculature in the Postnatal Mouse Heart. In: Benest, A.V. (eds) Angiogenesis. Methods in Molecular Biology, vol 2441. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2059-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2059-5_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2058-8

  • Online ISBN: 978-1-0716-2059-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics