Skip to main content

Evaluating the Role of Galectins in Clathrin-Independent Endocytosis

  • Protocol
  • First Online:
Galectins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2442))

Abstract

Galectin-3 is a chimeric galectin involved in diverse intracellular and extracellular functions. Galectin-3 is synthesized in the cytoplasm and then released extracellularly by a poorly understood non-canonical secretion mechanism. As a result, it can play important roles both inside and outside the cell. One important extracellular role of galectin-3 is in modulating clathrin-independent endocytosis (CIE), a form of cellular internalization that is still not well understood. CIE, unlike clathrin-mediated endocytosis, has neither defined signaling sequences nor cytoplasmic machinery. As a result, extracellular interactions like the galectin-glycan interactions are thought to directly drive changes in CIE. This chapter discusses the methods designed to study the role of galectin-glycan interactions in CIE, which have provided us with insight into the functions of galectin-3 and cell surface glycans during CIE cargo internalization. These methods include media supplementation for metabolic glycoengineering, antibody internalization assays, lectin panels to assay changes in glycan patterns, exogenous galectin-3 supplementation, galectin-3 secretion assays, and in vitro assays to monitor the effect of galectins on CIE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Johannes L, Jacob R, Leffler H (2018) Galectins at a glance. J Cell Sci 131(9). https://doi.org/10.1242/jcs.208884

  2. Leffler H, Carlsson S, Hedlund M, Qian Y, Poirier F (2002) Introduction to galectins. Glycoconj J 19(7):433–440. https://doi.org/10.1023/B:GLYC.0000014072.34840.04

    Article  CAS  PubMed  Google Scholar 

  3. Liu F-T, Patterson RJ, Wang JL (2002) Intracellular functions of galectins. Biochim Biophys Acta 1572(2):263–273. https://doi.org/10.1016/S0304-4165(02)00313-6

    Article  CAS  PubMed  Google Scholar 

  4. Ochieng J, Furtak V, Lukyanov P (2002) Extracellular functions of galectin-3. Glycoconj J 19(7):527–535. https://doi.org/10.1023/B:GLYC.0000014082.99675.2f

    Article  CAS  PubMed  Google Scholar 

  5. Nabi IR, Shankar J, Dennis JW (2015) The galectin lattice at a glance. J Cell Sci 128(13):2213–2219. https://doi.org/10.1242/jcs.151159

    Article  CAS  PubMed  Google Scholar 

  6. Anand IS, Rector TS, Kuskowski M, Adourian A, Muntendam P, Cohn JN (2013) Baseline and serial measurements of galectin-3 in patients with heart failure: relationship to prognosis and effect of treatment with valsartan in the Val-HeFT. Eur J Heart Fail 15(5):511–518. https://doi.org/10.1093/eurjhf/hfs205

    Article  CAS  PubMed  Google Scholar 

  7. Bresalier RS, Mazurek N, Sternberg LR, Byrd JC, Yunker CK, Nangia-Makker P, Raz A (1998) Metastasis of human colon cancer is altered by modifying expression of the β-galactoside-binding protein galectin 3. Gastroenterology 115(2):287–296. https://doi.org/10.1016/S0016-5085(98)70195-7

    Article  CAS  PubMed  Google Scholar 

  8. Furtak V, Hatcher F, Ochieng J (2001) Galectin-3 mediates the endocytosis of β-1 integrins by breast carcinoma cells. Biochem Biophys Res Commun 289(4):845–850. https://doi.org/10.1006/bbrc.2001.6064

    Article  CAS  PubMed  Google Scholar 

  9. Iacobini C, Blasetti Fantauzzi C, Bedini R, Pecci R, Bartolazzi A, Amadio B, Pesce C, Pugliese G, Menini S (2018) Galectin-3 is essential for proper bone cell differentiation and activity, bone remodeling and biomechanical competence in mice. Metabolism 83:149–158. https://doi.org/10.1016/j.metabol.2018.02.001

    Article  CAS  PubMed  Google Scholar 

  10. Iurisci I, Tinari N, Natoli C, Angelucci D, Cianchetti E, Iacobelli S (2000) Concentrations of galectin-3 in the sera of normal controls and cancer patients. Clin Cancer Res 6(4):1389–1393

    CAS  PubMed  Google Scholar 

  11. Kajitani K, Yanagimoto K, Nakabeppu Y (2017) Serum galectin-3, but not galectin-1, levels are elevated in schizophrenia: implications for the role of inflammation. Psychopharmacology 234(19):2919–2927

    Article  CAS  Google Scholar 

  12. Kim H-J, Do I-G, Jeon H-K, Cho YJ, Park YA, Choi J-J, Sung CO, Lee Y-Y, Choi CH, Kim T-J, Kim B-G, Lee J-W, Bae D-S (2013) Galectin 1 expression is associated with tumor invasion and metastasis in stage IB to IIA cervical cancer. Hum Pathol 44(1):62–68. https://doi.org/10.1016/j.humpath.2012.04.010

    Article  CAS  PubMed  Google Scholar 

  13. Melin EO, Dereke J, Thunander M, Hillman M (2018) Depression in type 1 diabetes was associated with high levels of circulating galectin-3. Endocr Connect 7(6):819. https://doi.org/10.1530/ec-18-0108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. O’Seaghdha CM, Hwang S-J, Ho JE, Vasan RS, Levy D, Fox CS (2013) Elevated galectin-3 precedes the development of CKD. J Am Soc Nephrol 24(9):1470–1477. https://doi.org/10.1681/ASN.2012090909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pasquini LA, Millet V, Hoyos HC, Giannoni JP, Croci DO, Marder M, Liu FT, Rabinovich GA, Pasquini JM (2011) Galectin-3 drives oligodendrocyte differentiation to control myelin integrity and function. Cell Death Differ 18(11):1746–1756. https://doi.org/10.1038/cdd.2011.40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Piper SE, de Courcey J, Sherwood RA, Amin-Youssef GF, McDonagh TA (2016) Serial galectin-3 for the monitoring of optimally treated stable chronic heart failure: a pilot study. Int J Cardiol 207:279–281. https://doi.org/10.1016/j.ijcard.2016.01.179

    Article  PubMed  Google Scholar 

  17. Takemoto Y, Ramirez RJ, Yokokawa M, Kaur K, Ponce-Balbuena D, Sinno MC, Willis BC, Ghanbari H, Ennis SR, Guerrero-Serna G, Henzi BC, Latchamsetty R, Ramos-Mondragon R, Musa H, Martins RP, Pandit SV, Noujaim SF, Crawford T, Jongnarangsin K, Pelosi F, Bogun F, Chugh A, Berenfeld O, Morady F, Oral H, Jalife J (2016) Galectin-3 regulates atrial fibrillation remodeling and predicts catheter ablation outcomes. JACC Basic Transl Sci 1(3):143–154. https://doi.org/10.1016/j.jacbts.2016.03.003

    Article  PubMed  PubMed Central  Google Scholar 

  18. Takenaka Y, Fukumori T, Raz A (2002) Galectin-3 and metastasis. Glycoconj J 19(7):543–549. https://doi.org/10.1023/B:GLYC.0000014084.01324.15

    Article  CAS  PubMed  Google Scholar 

  19. Thurston TLM, Wandel MP, von Muhlinen N, Foeglein Á, Randow F (2012) Galectin-8 targets damaged vesicles for autophagy to defend cells against bacterial invasion. Nature 482(7385):414–418. https://doi.org/10.1038/nature10744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mayor S, Pagano RE (2007) Pathways of clathrin-independent endocytosis. Nat Rev Mol Cell Biol 8(8):603–612. http://www.nature.com/nrm/journal/v8/n8/suppinfo/nrm2216_S1.html

    Article  CAS  Google Scholar 

  21. McMahon HT, Boucrot E (2011) Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol 12(8):517–533. http://www.nature.com/nrm/journal/v12/n8/suppinfo/nrm3151_S1.html

    Article  CAS  Google Scholar 

  22. Howes MT, Mayor S, Parton RG (2010) Molecules, mechanisms, and cellular roles of clathrin-independent endocytosis. Curr Opin Cell Biol 22(4):519–527. https://doi.org/10.1016/j.ceb.2010.04.001

    Article  CAS  PubMed  Google Scholar 

  23. Mayor S, Parton RG, Donaldson JG (2014) Clathrin-independent pathways of endocytosis. Cold Spring Harb Perspect Biol 6(6):a016758. https://doi.org/10.1101/cshperspect.a016758

    Article  PubMed  PubMed Central  Google Scholar 

  24. Sandvig K, Kavaliauskiene S, Skotland T (2018) Clathrin-independent endocytosis: an increasing degree of complexity. Histochem Cell Biol 150(2):107–118. https://doi.org/10.1007/s00418-018-1678-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Johannes L, Parton RG, Bassereau P, Mayor S (2015) Building endocytic pits without clathrin. Nat Rev Mol Cell Biol 16(5):311–321. https://doi.org/10.1038/nrm3968. http://www.nature.com/nrm/journal/v16/n5/abs/nrm3968.html#supplementary-information

    Article  CAS  PubMed  Google Scholar 

  26. Lakshminarayan R, Wunder C, Becken U, Howes MT, Benzing C, Arumugam S, Sales S, Ariotti N, Chambon V, Lamaze C (2014) Galectin-3 drives glycosphingolipid-dependent biogenesis of clathrin-independent carriers. Nat Cell Biol 16(6):595

    Article  CAS  Google Scholar 

  27. Mathew MP, Tan E, Saeui CT, Bovonratwet P, Liu L, Bhattacharya R, Yarema KJ (2015) Metabolic glycoengineering sensitizes drug-resistant pancreatic cancer cells to tyrosine kinase inhibitors erlotinib and gefitinib. Bioorg Med Chem Lett 25(6):1223–1227. https://doi.org/10.1016/j.bmcl.2015.01.060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mathew MP, Tan E, Saeui CT, Bovonratwet P, Sklar S, Bhattacharya R, Yarema KJ (2016) Metabolic flux-driven sialylation alters internalization, recycling, and drug sensitivity of the epidermal growth factor receptor (EGFR) in SW1990 pancreatic cancer cells. Oncotarget 7(41):66491–66511. https://doi.org/10.18632/oncotarget.11582

    Article  PubMed  PubMed Central  Google Scholar 

  29. Lajoie P, Partridge EA, Guay G, Goetz JG, Pawling J, Lagana A, Joshi B, Dennis JW, Nabi IR (2007) Plasma membrane domain organization regulates EGFR signaling in tumor cells. J Cell Biol 179(2):341–356. https://doi.org/10.1083/jcb.200611106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mathew MP, Donaldson JG (2018) Distinct cargo-specific response landscapes underpin the complex and nuanced role of galectin-glycan interactions in clathrin-independent endocytosis. J Biol Chem 293(19):7222–7237. https://doi.org/10.1074/jbc.RA118.001802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mathew MP, Donaldson JG (2019) Glycosylation and glycan interactions can serve as extracellular machinery facilitating clathrin-independent endocytosis. Traffic 20(4):295–300. https://doi.org/10.1111/tra.12636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohit P. Mathew .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mathew, M.P., Donaldson, J.G., Hanover, J.A. (2022). Evaluating the Role of Galectins in Clathrin-Independent Endocytosis. In: Stowell, S.R., Arthur, C.M., Cummings, R.D. (eds) Galectins. Methods in Molecular Biology, vol 2442. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2055-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2055-7_21

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2054-0

  • Online ISBN: 978-1-0716-2055-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics