Skip to main content

Visualizing and Quantifying Data from Time-Lapse Imaging Experiments

  • Protocol
  • First Online:
Fluorescent Microscopy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2440))

Abstract

One obvious feature of life is that it is highly dynamic. The dynamics can be captured by movies that are made by acquiring images at regular time intervals, a method that is also known as time-lapse imaging. Looking at movies is a great way to learn more about the dynamics in cells, tissue, and organisms. However, science is different from Netflix, in that it aims for a quantitative understanding of the dynamics. The quantification is important for the comparison of dynamics and to study effects of perturbations. Here, we provide detailed processing and analysis methods that we commonly use to analyze and visualize our time-lapse imaging data. All methods use freely available open-source software and use example data that is available from an online data repository. The step-by-step guides together with example data allow for fully reproducible workflows that can be modified and adjusted to visualize and quantify other data from time-lapse imaging experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Long F, Zhou J, Peng H (2012) Visualization and analysis of 3D microscopic images. PLoS Comput Biol 8:e1002519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pietzsch T, Saalfeld S, Preibisch S et al (2015) BigDataViewer: visualization and processing for large image data sets. Nat Methods 12:481–483

    Article  CAS  PubMed  Google Scholar 

  3. Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682

    Article  CAS  PubMed  Google Scholar 

  4. Goedhart J (2020) PlotTwist: a web app for plotting and annotating continuous data. PLoS Biol 18:e3000581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tinevez J-Y, Perry N, Schindelin J et al (2017) TrackMate: an open and extensible platform for single-particle tracking. Methods 115:80–90

    Article  CAS  PubMed  Google Scholar 

  6. Meddens MBM, Pandzic E, Slotman JA et al (2016) Actomyosin-dependent dynamic spatial patterns of cytoskeletal components drive mesoscale podosome organization. Nat Commun 7:13127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chertkova AO, Mastop M, Postma M et al (2020) Robust and bright genetically encoded fluorescent markers for highlighting structures and compartments in mammalian cells. bioRxiv. https://doi.org/10.1101/160374

  8. Arts JJG, Mahlandt EK, Grönloh MLB et al (2021) Endothelial junctional membrane protrusions serve as hotspots for neutrophil transmigration. elife. https://doi.org/10.7554/eLife.66074

  9. Geissbuehler M, Lasser T (2013) How to display data by color schemes compatible with red-green color perception deficiencies. Opt Express 21:9862–9874

    Article  PubMed  Google Scholar 

  10. Reinhard NR, Mastop M, Yin T et al (2017) The balance between Gαi-Cdc42/Rac and Gα12/13-RhoA pathways determines endothelial barrier regulation by sphingosine-1-phosphate. Mol Biol Cell 28(23):3371–3382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mastop M, Reinhard NR, Zuconelli CR et al (2018) A FRET-based biosensor for measuring Gα13 activation in single cells. PLoS One 13(3):e0193705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Niopek D, Wehler P, Roensch J et al (2016) Optogenetic control of nuclear protein export. Nat Commun 7:10624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nagai T, Yamada S, Tominaga T et al (2004) Expanded dynamic range of fluorescent indicators for Ca2+ by circularly permuted yellow fluorescent proteins. Proc Natl Acad Sci U S A 101:10554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Van Unen J, Rashidfarrokhi A, Hoogendoorn E et al (2016) Quantitative single-cell analysis of signaling pathways activated immediately downstream of histamine receptor subtypes. Mol Pharmacol (3):90, 162–176

    Google Scholar 

  15. Jakobs MA, Dimitracopoulos A, Franze K (2019) KymoButler, a deep learning software for automated kymograph analysis. elife 8:e42288

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Janine Arts and Jaap van Buul (Sanquin Research and Landsteiner Laboratory, Amsterdam, the Netherlands) for providing the data of the membrane dynamics and Marten Postma (University of Amsterdam, the Netherlands) for useful discussions.

This work was supported by an NWO ALW-OPEN grant ALWOP.306 (EKM). We are grateful for all the input, comments, and solutions from the active communities on Stack Overflow, Twitter, and other fora that share their knowledge and expertise (you know who you are).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim Goedhart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mahlandt, E.K., Goedhart, J. (2022). Visualizing and Quantifying Data from Time-Lapse Imaging Experiments. In: Heit, B. (eds) Fluorescent Microscopy. Methods in Molecular Biology, vol 2440. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2051-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2051-9_19

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2050-2

  • Online ISBN: 978-1-0716-2051-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics