Skip to main content

Hydrophobic and Hydrogel-Based Methods for Passive Tissue Clearing

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2440))

Abstract

Optical tissue clearing enables the precise imaging of cellular and subcellular structures in whole organs and tissues without the need for physical tissue sectioning. By combining tissue clearing with confocal or lightsheet microscopy, 3D images can be generated of entire specimens for visualization and large-scale data analysis. Here we demonstrate two different passive tissue clearing techniques that are compatible with immunofluorescent staining and lightsheet microscopy: PACT, an aqueous hydrogel–based clearing method, and iDISCO+, an organic solvent–based clearing method.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Ariel P (2017) A beginner's guide to tissue clearing. Int J Biochem Cell Biol 84:35–39. https://doi.org/10.1016/j.biocel.2016.12.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Matryba P, Kaczmarek L, Gołąb J (2019) Advances in ex situ tissue optical clearing. Laser Photonics Rev 13(8). https://doi.org/10.1002/lpor.201800292

  3. Ueda HR, Erturk A, Chung K, Gradinaru V, Chedotal A, Tomancak P, Keller PJ (2020) Tissue clearing and its applications in neuroscience. Nat Rev Neurosci 21(2):61–79. https://doi.org/10.1038/s41583-019-0250-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Richardson DS, Lichtman JW (2015) Clarifying tissue clearing. Cell 162(2):246–257. https://doi.org/10.1016/j.cell.2015.06.067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Susaki EA, Ueda HR (2016) Whole-body and whole-organ clearing and imaging techniques with single-cell resolution: toward organism-level systems biology in mammals. Cell Chem Biol 23(1):137–157. https://doi.org/10.1016/j.chembiol.2015.11.009

    Article  CAS  PubMed  Google Scholar 

  6. Erturk A, Becker K, Jahrling N, Mauch CP, Hojer CD, Egen JG, Hellal F, Bradke F, Sheng M, Dodt HU (2012) Three-dimensional imaging of solvent-cleared organs using 3DISCO. Nat Protoc 7(11):1983–1995. https://doi.org/10.1038/nprot.2012.119

    Article  CAS  PubMed  Google Scholar 

  7. Renier N, Wu Z, Simon DJ, Yang J, Ariel P, Tessier-Lavigne M (2014) iDISCO: a simple, rapid method to immunolabel large tissue samples for volume imaging. Cell 159(4):896–910. https://doi.org/10.1016/j.cell.2014.10.010

    Article  CAS  PubMed  Google Scholar 

  8. Chung K, Wallace J, Kim SY, Kalyanasundaram S, Andalman AS, Davidson TJ, Mirzabekov JJ, Zalocusky KA, Mattis J, Denisin AK, Pak S, Bernstein H, Ramakrishnan C, Grosenick L, Gradinaru V, Deisseroth K (2013) Structural and molecular interrogation of intact biological systems. Nature 497(7449):332–337. https://doi.org/10.1038/nature12107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tainaka K, Murakami TC, Susaki EA, Shimizu C, Saito R, Takahashi K, Hayashi-Takagi A, Sekiya H, Arima Y, Nojima S, Ikemura M, Ushiku T, Shimizu Y, Murakami M, Tanaka KF, Iino M, Kasai H, Sasaoka T, Kobayashi K, Miyazono K, Morii E, Isa T, Fukayama M, Kakita A, Ueda HR (2018) Chemical landscape for tissue clearing based on hydrophilic reagents. Cell Rep 24(8):2196–2210. e2199. https://doi.org/10.1016/j.celrep.2018.07.056

    Article  CAS  PubMed  Google Scholar 

  10. Yang B, Treweek JB, Kulkarni RP, Deverman BE, Chen CK, Lubeck E, Shah S, Cai L, Gradinaru V (2014) Single-cell phenotyping within transparent intact tissue through whole-body clearing. Cell 158(4):945–958. https://doi.org/10.1016/j.cell.2014.07.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Renier N, Adams EL, Kirst C, Wu Z, Azevedo R, Kohl J, Autry AE, Kadiri L, Umadevi Venkataraju K, Zhou Y, Wang VX, Tang CY, Olsen O, Dulac C, Osten P, Tessier-Lavigne M (2016) Mapping of brain activity by automated volume analysis of immediate early genes. Cell 165(7):1789–1802. https://doi.org/10.1016/j.cell.2016.05.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Treweek JB, Chan KY, Flytzanis NC, Yang B, Deverman BE, Greenbaum A, Lignell A, Xiao C, Cai L, Ladinsky MS, Bjorkman PJ, Fowlkes CC, Gradinaru V (2015) Whole-body tissue stabilization and selective extractions via tissue-hydrogel hybrids for high-resolution intact circuit mapping and phenotyping. Nat Protoc 10(11):1860–1896. https://doi.org/10.1038/nprot.2015.122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gradinaru V, Treweek J, Overton K, Deisseroth K (2018) Hydrogel-tissue chemistry: principles and applications. Annu Rev Biophys 47:355–376. https://doi.org/10.1146/annurev-biophys-070317-032905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Klingberg A, Hasenberg A, Ludwig-Portugall I, Medyukhina A, Mann L, Brenzel A, Engel DR, Figge MT, Kurts C, Gunzer M (2017) Fully automated evaluation of Total glomerular number and capillary tuft size in nephritic kidneys using Lightsheet microscopy. J Am Soc Nephrol 28(2):452–459. https://doi.org/10.1681/ASN.2016020232

    Article  CAS  PubMed  Google Scholar 

  15. Masselink W, Reumann D, Murawala P, Pasierbek P, Taniguchi Y, Bonnay F, Meixner K, Knoblich JA, Tanaka EM (2019) Broad applicability of a streamlined ethyl cinnamate-based clearing procedure. Development 146(3). https://doi.org/10.1242/dev.166884

Download references

Acknowledgments

This work was funded by Mission Connect, a program of TIRR Foundation. Use of the Texas A&M Microscopy and Imaging Center is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dylan A. McCreedy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Jalufka, F.L. et al. (2022). Hydrophobic and Hydrogel-Based Methods for Passive Tissue Clearing. In: Heit, B. (eds) Fluorescent Microscopy. Methods in Molecular Biology, vol 2440. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2051-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2051-9_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2050-2

  • Online ISBN: 978-1-0716-2051-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics