Skip to main content

Intravital Microscopy Techniques to Image Wound Healing in Mouse Skin

  • Protocol
  • First Online:
Fluorescent Microscopy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2440))

  • 1974 Accesses

Abstract

The ability to visualize biological phenomenon has driven scientific interest and advancement over the centuries. Although many methods and assays provide a detailed snapshot of a physiology, the ability to track such processes in real time has expanded the breadth of questions that can be interrogated in the laboratory. Intravital Microscopy (IVM) is a dynamic and powerful way to investigate both the homeostatic and host response to either therapeutic or pathological intervention using live animals. In this technique, animal models, (often mice) are anesthetized, and the organ of interest surgically exteriorized. The animal containing fluorescent labels (either endogenous, or conjugated to antibodies/proteins) will then be placed on a high-powered laser scanning microscope, where the labeled cells or structures can be observed in their natural environment. Complex behavioral data and interactions can be captured in a temporal manner, providing a plethora of information that will help researchers make conclusions on a more systemic level, rather than isolating only part the response. As the technology advances, a greater number of imaging modality options can be utilized, and more diverse research questions can be addressed. The goal of this chapter is to highlight IVM as a technique and help instruct new users on how to choose the proper modalities, and by using imaging of a skin wound in mice as a model, provide troubleshooting strategies, technical advice, and considerations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. van Zuylen J (1981) The microscopes of Antoni van Leeuwenhoek. J Microsc 121:309–328

    Article  PubMed  Google Scholar 

  2. Subramaniam S (2005) Bridging the imaging gap: visualizing subcellular architecture with electron tomography. Curr Opin Microbiol 8(3):316–322

    Article  PubMed  PubMed Central  Google Scholar 

  3. Herschel JFW (1845) On a case of superficial colour presented by a homogeneous liquid internally colourless. Philos Trans R Soc London 135:143–145

    Article  Google Scholar 

  4. Stokes GG (1852) On the change of refractibility of light. Philos Trans R Soc London 142:463–562

    Article  Google Scholar 

  5. Ellinger P, Hirt A (1929) Mikroskopische Beobachtungen an lebenden Organen mit Demonstrationen (Intravitalmikroskopie). Arch Exp Pathol Phar 147:63

    Article  Google Scholar 

  6. Davis R, Surewaard B, Turk M, Carestia A, Lee W, Petri B, Urbanski S, Coffin C, Jenne C (2020) Optimization of in vivo imaging provides a first look at mouse model of non-alcoholic fatty liver disease (NAFLD) using intravital microscopy. Front Immunol 10:2988. https://doi.org/10.3389/fimmu.2019.02988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kammertoens T, Friese C, Arina A, Idel C, Briesemeister D, Rothe M, Ivanov A, Szymborska A, Patone G, Kunz S, Sommermeyer D, Engels B, Leisegang M, Textor A, Joerg Fehling H, Fruttiger M, Lohoff M, Herrmann A, Yu H, Weichselbaum R, Uckert W, Hubner N, Gerhardt H, Beule D, Schreiber H, Blankenstein T (2017) Tumour ischaemia by interferon-γ resembles physiological blood vessel regression. Nature 545:98–102. https://doi.org/10.1038/nature22311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ito K, Smith BR, Parashurama N, Yoon J-K, Song SY, Miething C, Mallick P, Lowe S, Gambhir SS (2012) Unexpected dissemination patterns in lymphoma progression revealed by serial imaging within a murine lymph node. Cancer Res 72(23):6111–6118. https://doi.org/10.1158/0008-5472.CAN-12-2579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kondo H, Ratcliffe C, Hooper S, Dunsby C, Anderson K, Ellis J, Macrae J, Hennequart M, Anderson K, Sahai E (2021) Single-cell resolved imaging reveals intra-tumor heterogeneity in glycolysis, transitions between metabolic states, and their regulatory mechanisms. Cell Rep 34:108750. https://doi.org/10.1016/j.celrep.2021.108750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Naumenko V, Jenne CN, Mahoney DJ (2016) Intravital microscopy for imaging the tumor microenvironment in live mice. Methods Mol Biol 1458:217–230. https://doi.org/10.1007/978-1-4939-3801-8_16

    Article  CAS  PubMed  Google Scholar 

  11. Paddock S (1999) Confocal laser scanning microscopy. Biotechniques 27:992–1004

    Article  CAS  PubMed  Google Scholar 

  12. Helmchen F, Denk W (2005) Deep tissue two-photon microscopy. Nat Methods 2:932–940. https://doi.org/10.1038/NMETH818

    Article  CAS  PubMed  Google Scholar 

  13. Phan TG, Bullen A (2010) Practical intravital two-photon microscopy for immunological research: faster, brighter, deeper. Immunol Cell Biol 88:438–444. https://doi.org/10.1038/icb.2009.116

    Article  PubMed  Google Scholar 

  14. Rahmani W, Liu Y, Rosin NL, Kline A, Raharjo E, YoonJ Stratton JA, Sinha S, Biernaskie J (2018) Macrophages promote wound-induced hair follicle regeneration in a CX3CR1- and TGF-β1–dependent manner. J Invest Dermatol 138:2111–2122. https://doi.org/10.1016/j.jid.2018.04.010

    Article  CAS  PubMed  Google Scholar 

  15. Abbasi S, Sinha S, Labit E, Rosin NL, Yoon G, Rahmani W, Jaffer A, Sharma N, Hagner A, Shah P, Arora R, Yoon J, Islam A, Uchida A, Chang CK, Stratton JA, Scott RW, Rossi F, Underhill T, Biernaskie J (2020) Distinct regulatory programs control the latent regenerative potential of dermal fibroblasts during wound healing. Cell Stem Cell 27:396–412. https://doi.org/10.1016/j.stem.2020.07.008ll

    Article  CAS  PubMed  Google Scholar 

  16. Lichtman J, Conchello J (2005) Fluorescence microscopy. Nat Methods 2:910–919. https://doi.org/10.1038/NMETH817

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig N. Jenne .

Editor information

Editors and Affiliations

1 Electronic Supplementary Materials

Surgical preparation to generate a free skin flap for intravital imaging of a biopsy punch wound model (MP4 8920 kb)

Surgical preparation of skin flap to remove connective tissue and facia to improve imaging clarity (MP4 3523 kb)

Positioning of skin flap on the stage of an inverted intravital microscopy to facilitate imaging of the biopsy punch skin wound model (MP4 3797 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Turk, M., Biernaskie, J., Mahoney, D.J., Jenne, C.N. (2022). Intravital Microscopy Techniques to Image Wound Healing in Mouse Skin. In: Heit, B. (eds) Fluorescent Microscopy. Methods in Molecular Biology, vol 2440. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2051-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2051-9_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2050-2

  • Online ISBN: 978-1-0716-2051-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics