Skip to main content

Methods for Quantification of Viruses

  • Protocol
  • First Online:
Protocols for the Diagnosis of Pig Viral Diseases

Abstract

Virus quantification is widely practised in both commercial and academic laboratories involved in research or production of viral vaccines, recombinant proteins, viral antigens, or antiviral agents. For this, the cell culture-based endpoint dilution assays are the most widely used methods. However, these infectivity assays are laborious, time consuming, and susceptible to failures due to the contamination of cells. With the advancement in science, a number of other methods based on chemical or physical principles have been developed for determining the viral load in a given sample. These methods include electron microscopy, hemagglutination assay, qPCR, flow cytometry, and serological assays such as ELISA. However, all of these methods have their own limitations and advantages associated with them and therefore one must be careful while selecting an appropriate method to determine the virus titer and interpretation of results. Here, we describe the theory and practical aspects of the most commonly used methods for virus quantification and their practical utility in the field of virology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berger A, Preiser W (2002) Viral genome quantification as a tool for improving patient management: the example of HIV, HBV, HCV and CMV. J Antimicrob Chemother 49(5):713–721. https://doi.org/10.1093/jac/dkf050

    Article  CAS  PubMed  Google Scholar 

  2. Payne S (2017) Methods to study viruses. In: Viruses. Academic Press, London, pp 37–52

    Chapter  Google Scholar 

  3. Fox JC, Kidd IM, Griffiths PD, Sweny P, Emery VC (1995) Longitudinal analysis of cytomegalovirus load in renal transplant recipients using a quantitative polymerase chain reaction: correlation with disease. J Gen Virol 76(Pt 2):309–319. https://doi.org/10.1099/0022-1317-76-2-309

    Article  CAS  PubMed  Google Scholar 

  4. Mohanty SB, Dutta SK (1981) Cultivation and assay of viruses. In: Veterinary virology. Lea & Febiger, Philadelphia, PA

    Google Scholar 

  5. Bhatt M, Mohapatra JK, Pandey LK, Mohanty NN, Das B, Prusty BR, Pattnaik B (2018) Mutational analysis of foot and mouth disease virus nonstructural polyprotein 3AB-coding region to design a negative marker virus. Virus Res 243:36–43. https://doi.org/10.1016/j.virusres.2017.10.010

    Article  CAS  PubMed  Google Scholar 

  6. Baer A, Kehn-Hall K (2014) Viral concentration determination through plaque assays: using traditional and novel overlay systems. J Vis Exp (93):e52065. https://doi.org/10.3791/52065

  7. Flint SJ, Enquist W, Racaniello VR, Skalka AM (2009) Virological methods. In: Principles of virology. ASM Press, Hoboken, NJ

    Google Scholar 

  8. Condit CR (2013) Principles of virology. In: fields virology, 6th edn. Wolters Kluwer Health/Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  9. MacLachlan NJ, Dubovi EJ (2017) Virus replication. In: Fenner’s veterinary virology, 5th edn. Academic Press, London

    Google Scholar 

  10. Pourianfar HR, Javadi A, Grollo L (2012) A colorimetric-based accurate method for the determination of enterovirus 71 titer. Indian journal of virology 23(3):303–310. https://doi.org/10.1007/s13337-012-0105-0

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ramakrishnan MA (2016) Determination of 50% endpoint titer using a simple formula. World J Virol 5(2):85–86. https://doi.org/10.5501/wjv.v5.i2.85

    Article  PubMed  PubMed Central  Google Scholar 

  12. de León P, Bustos MJ, Carrascosa AL (2013) Laboratory methods to study African swine fever virus. Virus Res 173(1):168–179. https://doi.org/10.1016/j.virusres.2012.09.013

    Article  CAS  PubMed  Google Scholar 

  13. Carrascosa AL, Bustos MJ, de Leon P (2011) Methods for growing and titrating African swine fever virus: field and laboratory samples. Curr Protoc Cell Biol Chapter 26:Unit 26.14

    PubMed  Google Scholar 

  14. Malenovska H (2013) Virus quantitation by transmission electron microscopy, TCID50, and the role of timing virus harvesting: a case study of three animal viruses. J Virol Methods 191(2):136–140

    Article  CAS  Google Scholar 

  15. Fox JC, Emery VC (1992) Quantification of viruses in clinical samples. Rev Med Virol 2:195–203

    Article  Google Scholar 

  16. Cheng H, Yang L, Cai Z, Qiao X, Du L, Hou J, Chen J, Zheng Q (2020) Development of haemagglutination assay for titration of porcine circovirus type 2. Anal Biochem 598:113706

    Article  CAS  Google Scholar 

  17. Huang L, Wei Y, Xia D, Liu D, Zhu H, Wu H, Li F, Liu C (2019) A broad spectrum monoclonal antibody against porcine circovirus type 2 for antigen and antibody detection. Appl Microbiol Biotechnol 103:3453–3464. https://doi.org/10.1007/s00253-019-09715-0

    Article  CAS  PubMed  Google Scholar 

  18. Zhang Y, Han L, Xia L, Yuan Y, Hu H (2020) Assessment of hemagglutination activity of porcine deltacoronavirus. J Vet Sci 21(1):e12. https://doi.org/10.4142/jvs.2020.21.e12

    Article  PubMed  Google Scholar 

  19. Jusa ER, Inaba Y, Kohno M, Mashimo H, Hirose O (1996) Hemagglutination with porcine reproductive and respiratory syndrome virus. J Vet Med Sci 58(6):521–527. https://doi.org/10.1292/jvms.58.521

    Article  CAS  PubMed  Google Scholar 

  20. Mora-Díaz JC, Piñeyro PE, Houston E, Zimmerman J, Giménez-Lirola LG (2019) Porcine Hemagglutinating encephalomyelitis virus: a review. Front Vet Sci 6:53. https://doi.org/10.3389/fvets.2019.00053

    Article  PubMed  PubMed Central  Google Scholar 

  21. Clementi M (2000) Quantitative molecular analysis of virus expression and replication. J Clin Microbiol 38:2030–2036

    Article  CAS  Google Scholar 

  22. Holodniy M, Katzenstein D, Sengupta S, Wang AM, Casipit C, Schwartz DH, Konrad M, Groves E, Merigan TC (1991) Detection and quantification of human immunodeficiency virus RNA in patient serum by use of the polymerase chain reaction. J Infect Dis 163:862–866

    Article  CAS  Google Scholar 

  23. Menzo S, Bagnarelli P, Giacca M, Manzin A, Varaldo PE, Clementi M (1992) Absolute quantitation of viremia in human immunodeficiency virus infection by competitive reverse transcription and polymerase chain reaction. J Clin Microbiol 30(7):1752–1757. https://doi.org/10.1128/jcm.30.7.1752-1757.1992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kearns AM, Turner AJL, Taylor CE, George PW, Freeman R, Gennery AR (2001) LightCycler-based quantitative PCR for rapid detection of human herpesvirus 6 DNA in clinical material. J Clin Microbiol 39:3020–3021

    Article  CAS  Google Scholar 

  25. Kimura H, Morita M, Yabuta Y, Kuzushima K, Kato K, Kojima S, Matsuyama T, Morishima T (1999) Quantitative analysis of Epstein–Barr virus load by using a real-time PCR assay. J Clin Microbiol 37(1):132–136. https://doi.org/10.1128/JCM.37.1.132-136.1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lallemand F, Desire N, Rozenbaum W, Nicolas JC, Marechal V (2000) Quantitative analysis of human herpesvirus 8 viral load using a real-time PCR assay. J Clin Microbiol 38(4):1404–1408. https://doi.org/10.1128/JCM.38.4.1404-1408.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Laue T, Emmerich P, Schmitz H (1999) Detection of dengue virus RNA inpatients after primary or secondary dengue infection by using the TaqMan automated amplification system. J Clin Microbiol 37(8):2543–2547. https://doi.org/10.1128/JCM.37.8.2543-2547.1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mackay IM, Arden KE, Nitsche A (2002) Real-time PCR in virology. Nucleic Acids Res 30(6):1292–1305. https://doi.org/10.1093/nar/30.6.1292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ohyashiki JK, Suzuki A, Aritaki K, Nagate A, Shoji N, Ohyashiki K, Ojima T, Abe K, Yamamoto K (2000) Use of real-time PCR to monitor human herpesvirus 6 reactivation after allogeneic bone marrow transplantation. Int J Mol Med 6(4):427–432. https://doi.org/10.3892/ijmm.6.4.427

    Article  CAS  PubMed  Google Scholar 

  30. Tanaka N, Kimura H, Iida K, Saito Y, Tsuge I, Yoshimi A, Matsuyama T, Morishima T (2000) Quantitative analysis of cytomegalovirus load using a real-time PCR assay. J Med Virol 60(4):455–462. https://doi.org/10.1002/(sici)1096-9071(200004)60:4<455::aid-jmv14>3.0.co;2-q

    Article  CAS  PubMed  Google Scholar 

  31. Locatelli G, Santoro F, Veglia F, Gobbi A, Lusso P, Malnati MS (2000) Real-time quantitative PCR for human herpesvirus 6 DNA. J Clin Microbiol 38(11):4042–4048

    Article  CAS  Google Scholar 

  32. Kemeny DM, Challacombe SJ (1988) ELISA and other solid phase immunoassays: theoretical and practical aspects. Wiley, Chichester

    Google Scholar 

  33. Chandler WL (2016) Measurement of microvesicle levels in human blood using flow cytometry. Cytometry B Clin Cytom 90:326–336. https://doi.org/10.1002/cyto.b.21343

    Article  CAS  PubMed  Google Scholar 

  34. Marie D, Brussaard CPD, Thyrhaug R, Bratbak G, Vaulot D (1999) Enumeration of marine viruses in culture and natural samples by flow cytometry. Appl Environ Microbiol 65(1):45–52. https://doi.org/10.1128/AEM.65.1.45-52.1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lippé R (2018) Flow Virometry: a powerful tool to functionally characterize viruses. J Virol 92(3):e01765–e01717. https://doi.org/10.1128/JVI.01765-17

    Article  PubMed  PubMed Central  Google Scholar 

  36. Khalil JY, Langlois T, Andreani J, Sorraing JM, Raoult D, Camoin L, La Scola B (2016) Flow cytometry sorting to separate viable giant viruses from amoeba co-culture supernatants. Front Cell Infect Microbiol 6:202. https://doi.org/10.3389/fcimb.2016.00202

    Article  CAS  PubMed  Google Scholar 

  37. Brussaard CP, Marie D, Bratbak G (2000) Flow cytometric detection of viruses. J Virol Methods 85(1-2):175–182. https://doi.org/10.1016/s0166-0934(99)00167-6

    Article  CAS  PubMed  Google Scholar 

  38. Chen F, Lu JR, Binder BJ, Liu YC, Hodson RE (2001) Application of digital image analysis and flow cytometry to enumerate marine viruses stained with SYBR gold. Appl Environ Microbiol 67(2):539–545. https://doi.org/10.1128/AEM.67.2.539-545.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ferris MM, McCabe MO, Doan LG, Rowlen KL (2002) Rapid enumeration of respiratory viruses. Anal Chem 74(8):1849–1856. https://doi.org/10.1021/ac011183q

    Article  CAS  PubMed  Google Scholar 

  40. Landowski M, Dabundo J, Liu Q, Nicola AV, Aguilar HC (2014) Nipah virion entry kinetics, composition, and conformational changes determined by enzymatic virus-like particles and new flow virometry tools. J Virol 88(24):14197–14206. https://doi.org/10.1128/JVI.01632-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Shen CF, Meghrous J, Kamen A (2002) Quantitation of baculovirus particles by flow cytometry. J Virol Methods 105(2):321–330. https://doi.org/10.1016/s0166-0934(02)00128-3

    Article  CAS  PubMed  Google Scholar 

  42. Bonar MM, Tilton JC (2017) High sensitivity detection and sorting of infectious human immunodeficiency virus (HIV-1) particles by flow virometry. Virology 505:80–90. https://doi.org/10.1016/j.virol.2017.02.016

    Article  CAS  PubMed  Google Scholar 

  43. CDER (2006) Guidance for industry antiviral product development — conducting and submitting virology studies to the agency. Center for Drug Evaluation and Research (CDER) at the Food and Drug Administration, Rockville, MD

    Google Scholar 

  44. Brussaard CP (2004) Optimization of procedures for counting viruses by flow cytometry. Appl Environ Microbiol 70:1506–1513. https://doi.org/10.1128/AEM.70.3.1506-1513.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bhatt, M. et al. (2022). Methods for Quantification of Viruses. In: Deb, R., Yadav, A.K., Rajkhowa, S., Malik, Y.S. (eds) Protocols for the Diagnosis of Pig Viral Diseases. Springer Protocols Handbooks. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2043-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2043-4_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2042-7

  • Online ISBN: 978-1-0716-2043-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics