Skip to main content

Activity-Dependent Chromatin Mechanisms in Cerebellar Motor Learning

  • Protocol
  • First Online:
Measuring Cerebellar Function

Part of the book series: Neuromethods ((NM,volume 177))

  • 732 Accesses

Abstract

Neural circuit activity representing sensorimotor experiences trigger molecular mechanisms that drive long-lasting changes in brain circuits underlying learning and memory. Recent advancements in molecular genetics have led to development of rich toolboxes, e.g. optogenetics and CRISPR, that enable precise temporal and cell type-specific control of neural circuit activity and downstream activity-dependent mechanisms. One such molecular mechanism, the organization of three-dimensional (3D) genome architecture, has emerged as a powerful regulator of rapid and coordinated gene expression in response to neural circuit activity. Here, we describe how to perform optogenetic stimulation of granule neurons at the input layer of the cerebellar cortex in mice and how to profile activity-dependent changes in neuronal genome architecture. In addition, we will discuss how to genetically knock out chromatin regulators specifically in granule neurons in adult mice to study the functions of genome organization in activity-dependent gene expression and cerebellar-dependent motor learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lisman J et al (2018) Memory formation depends on both synapse-specific modifications of synaptic strength and cell-specific increases in excitability. Nat Neurosci 21:309–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Yap EL, Greenberg ME (2018) Activity-regulated transcription: bridging the gap between neural activity and behavior. Neuron 100:330–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Han JH et al (2007) Neuronal competition and selection during memory formation. Science 316:457–460

    Article  CAS  PubMed  Google Scholar 

  4. Cai DJ et al (2016) A shared neural ensemble links distinct contextual memories encoded close in time. Nature 534:115–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kelleher RJ 3rd, Govindarajan A, Tonegawa S (2004) Translational regulatory mechanisms in persistent forms of synaptic plasticity. Neuron 44:59–73

    Article  CAS  PubMed  Google Scholar 

  6. Zhai S et al (2013) Long-distance integration of nuclear ERK signaling triggered by activation of a few dendritic spines. Science 342:1107–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mardinly AR et al (2016) Sensory experience regulates cortical inhibition by inducing IGF1 in VIP neurons. Nature 531:371–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sun X et al (2020) Functionally distinct neuronal ensembles within the memory engram. Cell 181(410–423):e417

    Google Scholar 

  9. Herre M, Korb E (2019) The chromatin landscape of neuronal plasticity. Curr Opin Neurobiol 59:79–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tyssowski KM, Gray JM (2019) The neuronal stimulation-transcription coupling map. Curr Opin Neurobiol 59:87–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Heinz DA, Bloodgood BL (2020) Mechanisms that communicate features of neuronal activity to the genome. Curr Opin Neurobiol 63:131–136

    Article  CAS  PubMed  Google Scholar 

  12. Zheng H, Xie W (2019) The role of 3D genome organization in development and cell differentiation. Nat Rev Mol Cell Biol 20:535–550

    Article  CAS  PubMed  Google Scholar 

  13. Bashkirova E, Lomvardas S (2019) Olfactory receptor genes make the case for inter-chromosomal interactions. Curr Opin Genet Dev 55:106–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sawtell NB (2010) Multimodal integration in granule cells as a basis for associative plasticity and sensory prediction in a cerebellum-like circuit. Neuron 66:573–584

    Article  CAS  PubMed  Google Scholar 

  15. Giovannucci A et al (2017) Cerebellar granule cells acquire a widespread predictive feedback signal during motor learning. Nat Neurosci 20:727–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wagner MJ et al (2017) Cerebellar granule cells encode the expectation of reward. Nature 544:96–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wagner MJ et al (2019) Shared cortex-cerebellum dynamics in the execution and learning of a motor task. Cell 177(669–682):e624

    Google Scholar 

  18. Yamada T et al (2019) Sensory experience remodels genome architecture in neural circuit to drive motor learning. Nature 569:708–713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Markwalter KH et al (2019) Sensorimotor coding of Vermal granule neurons in the developing mammalian cerebellum. J Neurosci 39:6626–6643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Stoodley CJ, Schmahmann JD (2010) Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex 46:831–844

    Article  PubMed  PubMed Central  Google Scholar 

  21. King M et al (2019) Functional boundaries in the human cerebellum revealed by a multi-domain task battery. Nat Neurosci 22:1371–1378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chambers WW, Sprague JM (1951) Differential effects of cerebellar anterior lobe cortex and fastigial nuclei on postural tonus in the cat. Science 114:324–325

    Article  CAS  PubMed  Google Scholar 

  23. Mauritz KH, Dichgans J, Hufschmidt A (1979) Quantitative analysis of stance in late cortical cerebellar atrophy of the anterior lobe and other forms of cerebellar ataxia. Brain 102:461–482

    Article  CAS  PubMed  Google Scholar 

  24. Heiney SA et al (2018) Single-unit extracellular recording from the cerebellum during Eyeblink conditioning in head-fixed mice. In: Sillitoe R (ed) Extracellular recording approaches, Neuromethods, vol 134. Humana Press, New York, NY, pp 39–71

    Google Scholar 

  25. Heiney SA et al (2014) Cerebellar-dependent expression of motor learning during eyeblink conditioning in head-fixed mice. J Neurosci 34:14845–14853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rao SS et al (2014) A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159:1665–1680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fang R et al (2016) Mapping of long-range chromatin interactions by proximity ligation-assisted ChIP-seq. Cell Res 26:1345–1348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Madisen L et al (2012) A toolbox of Cre-dependent optogenetic transgenic mice for light-induced activation and silencing. Nat Neurosci 15:793–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pan N et al (2009) Defects in the cerebella of conditional Neurod1 null mice correlate with effective Tg(Atoh1-cre) recombination and granule cell requirements for Neurod1 for differentiation. Cell Tissue Res 337:407–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Platt RJ et al (2014) CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell 159:440–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Funfschilling U, Reichardt LF (2002) Cre-mediated recombination in rhombic lip derivatives. Genesis 33:160–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Powell K et al (2015) Synaptic representation of locomotion in single cerebellar granule cells. eLife 4:e07290

    Article  PubMed Central  Google Scholar 

  33. Herman AM et al (2014) Cell type-specific and time-dependent light exposure contribute to silencing in neurons expressing Channelrhodopsin-2. eLife 3:e01481

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Lin JY (2011) A user’s guide to channelrhodopsin variants: features, limitations and future developments. Exp Physiol 96:19–25

    Article  PubMed  Google Scholar 

  35. Yizhar O et al (2011) Optogenetics in neural systems. Neuron 71:9–34

    Article  CAS  PubMed  Google Scholar 

  36. Incontro S et al (2014) Efficient, complete deletion of synaptic proteins using CRISPR. Neuron 83:1051–1057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yeomans JS et al (2002) Tactile, acoustic and vestibular systems sum to elicit the startle reflex. Neurosci Biobehav Rev 26:1–11

    Article  PubMed  Google Scholar 

  38. Bonev B, Cavalli G (2016) Organization and function of the 3D genome. Nat Rev Genet 17:661–678

    Article  CAS  PubMed  Google Scholar 

  39. Kempfer R, Pombo A (2020) Methods for mapping 3D chromosome architecture. Nat Rev Genet 21:207–226

    Article  CAS  PubMed  Google Scholar 

  40. Durand NC et al (2016) Juicer provides a one-click system for analyzing loop-resolution hi-C experiments. Cell Syst 3:95–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Servant N et al (2015) HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biol 16:259

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Singh VP, Gerton JL (2015) Cohesin and human disease: lessons from mouse models. Curr Opin Cell Biol 37:9–17

    Article  CAS  PubMed  Google Scholar 

  43. Gabel HW et al (2015) Disruption of DNA-methylation-dependent long gene repression in Rett syndrome. Nature 522:89–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ronan JL, Wu W, Crabtree GR (2013) From neural development to cognition: unexpected roles for chromatin. Nat Rev Genet 14:347–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Valnegri, P., Yamada, T., Yang, Y. (2022). Activity-Dependent Chromatin Mechanisms in Cerebellar Motor Learning. In: Sillitoe, R.V. (eds) Measuring Cerebellar Function. Neuromethods, vol 177. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2026-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2026-7_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2025-0

  • Online ISBN: 978-1-0716-2026-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics