Skip to main content

Mapping Structure–Function Relationships within Cerebellar Circuits

  • Protocol
  • First Online:
Measuring Cerebellar Function

Part of the book series: Neuromethods ((NM,volume 177))

  • 662 Accesses

Abstract

A key organizational feature of the cerebellum is its division into a series of cerebellar modules. The cortical component of each module is termed a zone. Each zone is defined by its climbing input originating from a well-defined region of the inferior olive, which targets one or more longitudinal zones of Purkinje cells within the cerebellar cortex. In turn, Purkinje cells within each zone project to specific regions of the cerebellar and vestibular nuclei. The behavioral significance of zones remains poorly understood.

This chapter will describe approaches to physiologically and anatomically identify cerebellar cortical zones in both acute and chronic preparat ions (rat and cat) as well as methods to record from zones during behavior in order to determine the role that they have in cerebellar function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Apps R, Hawkes R (2009) Cerebellar cortical organization: a one-map hypothesis. Nat Rev Neurosci 10(9):670–681. https://doi.org/10.1038/nrn2698

    Article  CAS  PubMed  Google Scholar 

  2. Cerminara NL, Lang EJ, Sillitoe RV, Apps R (2015) Redefining the cerebellar cortex as an assembly of non-uniform Purkinje cell microcircuits. Nat Rev Neurosci 16(2):79–93. https://doi.org/10.1038/nrn3886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ramnani N (2006) The primate cortico-cerebellar system: anatomy and function. Nat Rev Neurosci 7(7):511–522. https://doi.org/10.1038/nrn1953

    Article  CAS  PubMed  Google Scholar 

  4. Voogd J, Glickstein M (1998) The anatomy of the cerebellum. Trends Neurosci 21(9):370–375. https://doi.org/10.1016/s0166-2236(98)01318-6

    Article  CAS  PubMed  Google Scholar 

  5. Apps R, Garwicz M (2005) Anatomical and physiological foundations of cerebellar information processing. Nat Rev Neurosci 6(4):297–311. https://doi.org/10.1038/nrn1646

    Article  CAS  PubMed  Google Scholar 

  6. Ruigrok TJ (2011) Ins and outs of cerebellar modules. Cerebellum 10(3):464–474. https://doi.org/10.1007/s12311-010-0164-y

    Article  PubMed  Google Scholar 

  7. Voogd J, Bigare F (1980) Topographical distribution of olivary and cortico nuclear fibers in the cerebellum: a review. In: Courville J, Montigny C, Lamarre Y (eds) The inferior olivary nucleus anatomy and physiology. Raven Press, New York, pp 207–234

    Google Scholar 

  8. Voogd J, Ruigrok TJ (1997) Transverse and longitudinal patterns in the mammalian cerebellum. Prog Brain Res 114:21–37. https://doi.org/10.1016/s0079-6123(08)63356-7

    Article  CAS  PubMed  Google Scholar 

  9. Atkins MJ, Apps R (1997) Somatotopical organisation within the climbing fibre projection to the paramedian lobule and copula pyramidis of the rat cerebellum. J Comp Neurol 389(2):249–263

    Article  CAS  Google Scholar 

  10. Buisseret-Delmas C, Angaut P (1993) The cerebellar olivo-corticonuclear connections in the rat. Prog Neurobiol 40(1):63–87

    Article  CAS  Google Scholar 

  11. Cerminara NL, Aoki H, Loft M, Sugihara I, Apps R (2013) Structural basis of cerebellar microcircuits in the rat. J Neurosci 33(42):16427–16442. https://doi.org/10.1523/JNEUROSCI.0861-13.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Garwicz M, Apps R, Trott JR (1996) Micro-organization of olivocerebellar and corticonuclear connections of the paravermal cerebellum in the cat. Eur J Neurosci 8(12):2726–2738. https://doi.org/10.1111/j.1460-9568.1996.tb01567.x

    Article  CAS  PubMed  Google Scholar 

  13. Pijpers A, Apps R, Pardoe J, Voogd J, Ruigrok TJ (2006) Precise spatial relationships between mossy fibers and climbing fibers in rat cerebellar cortical zones. J Neurosci 26(46):12067–12080. https://doi.org/10.1523/JNEUROSCI.2905-06.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Oscarsson O (1973) Functional organization of spinocerebellar paths. In: Iggo A (ed) Handbook of sensory physiology, vol II, somatosensory system. Springer, New York, pp 339–380

    Google Scholar 

  15. Oscarsson O (1979) Functional units of the cerebellum—sagittal zones and microzones. Trends Neurosci 2:143–145. https://doi.org/10.1016/0166-2236(79)90057-2

    Article  Google Scholar 

  16. Armstrong DM (1974) Functional significance of connections of the inferior olive. Physiol Rev 54(2):358–417. https://doi.org/10.1152/physrev.1974.54.2.358

    Article  CAS  PubMed  Google Scholar 

  17. Apps R, Garwicz M (2000) Precise matching of olivo-cortical divergence and cortico-nuclear convergence between somatotopically corresponding areas in the medial C1 and medial C3 zones of the paravermal cerebellum. Eur J Neurosci 12(1):205–214

    Article  CAS  Google Scholar 

  18. Dietrichs E (1983) The cerebellar corticonuclear and nucleocortical projections in the cat as studied with anterograde and retrograde transport of horseradish peroxidase. V. The posterior lobe vermis and the flocculo-nodular lobe. Anat Embryol (Berl) 167(3):449–462. https://doi.org/10.1007/bf00315681

    Article  CAS  Google Scholar 

  19. Sugihara I, Fujita H, Na J, Quy PN, Li BY, Ikeda D (2009) Projection of reconstructed single Purkinje cell axons in relation to the cortical and nuclear aldolase C compartments of the rat cerebellum. J Comp Neurol 512(2):282–304. https://doi.org/10.1002/cne.21889

    Article  CAS  PubMed  Google Scholar 

  20. Voogd J, Ruigrok TJ (2004) Cerebellum and precerebellar nuclei. In: Paxinos G, Mai JK (eds) The human nervous system. Elsevier Academic Press, Amsterdam, pp 321–392

    Chapter  Google Scholar 

  21. Ito M (1984) The cerebellum and neural control. Raven, New York

    Google Scholar 

  22. Apps R, Lee S (1999) Gating of transmission in climbing fibre paths to cerebellar cortical C1 and C3 zones in the rostral paramedian lobule during locomotion in the cat. J Physiol 516(Pt 3):875–883. https://doi.org/10.1111/j.1469-7793.1999.0875u.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lawrenson CL, Watson TC, Apps R (2016) Transmission of predictable sensory signals to the cerebellum via climbing fiber pathways is gated during exploratory behavior. J Neurosci 36(30):7841–7851. https://doi.org/10.1523/JNEUROSCI.0439-16.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pardoe J, Apps R (2002) Structure-function relations of two somatotopically corresponding regions of the rat cerebellar cortex: olivo-cortico-nuclear connections. Cerebellum 1(3):165–184. https://doi.org/10.1080/14734220260418402

    Article  PubMed  Google Scholar 

  25. Apps R, Lidierth M, Armstrong DM (1990) Locomotion-related variations in excitability of spino-olivocerebellar paths to cat cerebellar cortical c2 zone. J Physiol 424:487–512. https://doi.org/10.1113/jphysiol.1990.sp018079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lidierth M, Apps R (1990) Gating in the spino-olivocerebellar pathways to the c1 zone of the cerebellar cortex during locomotion in the cat. J Physiol 430:453–469. https://doi.org/10.1113/jphysiol.1990.sp018301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Koutsikou S, Crook JJ, Earl EV, Leith JL, Watson TC, Lumb BM et al (2014) Neural substrates underlying fear-evoked freezing: the periaqueductal grey-cerebellar link. J Physiol 592(10):2197–2213. https://doi.org/10.1113/jphysiol.2013.268714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cerminara NL, Apps R, Marple-Horvat DE (2009) An internal model of a moving visual target in the lateral cerebellum. J Physiol 587(2):429–442. https://doi.org/10.1113/jphysiol.2008.163337

    Article  CAS  PubMed  Google Scholar 

  29. Miles OB, Cerminara NL, Marple-Horvat DE (2006) Purkinje cells in the lateral cerebellum of the cat encode visual events and target motion during visually guided reaching. J Physiol 571(Pt 3):619–637. https://doi.org/10.1113/jphysiol.2005.099382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Seoane A, Apps R, Balbuena E, Herrero L, Llorens J (2005) Differential effects of trans-crotononitrile and 3-acetylpyridine on inferior olive integrity and behavioural performance in the rat. Eur J Neurosci 22(4):880–894. https://doi.org/10.1111/j.1460-9568.2005.04230.x

    Article  CAS  PubMed  Google Scholar 

  31. Wise AK, Cerminara NL, Marple-Horvat DE, Apps R (2010) Mechanisms of synchronous activity in cerebellar Purkinje cells. J Physiol 588(Pt 13):2373–2390. https://doi.org/10.1113/jphysiol.2010.189704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gordon M, Rubia FJ, Strata P (1973) The effect of pentothal on the activity evoked in the cerebellar cortex. Exp Brain Res 17(1):50–62. https://doi.org/10.1007/BF00234563

    Article  CAS  PubMed  Google Scholar 

  33. Körlin D, Larson B (1970) Differences in cerebellar potentials evoked by the group I and cutaneous components of the cuneocerebellar tract. In: Andersen P, Jansen JKS (eds) Excitatory synaptic mechanisms. Univ. Press, Oslo, pp 237–241

    Google Scholar 

  34. Latham A, Paul DH (1971) Effects of sodium thiopentone on cerebellar neurone activity. Brain Res 25(1):212–215. https://doi.org/10.1016/0006-8993(71)90585-3

    Article  CAS  PubMed  Google Scholar 

  35. Trott JR, Apps R, Armstrong DM (1990) Topographical organisation within the cerebellar nucleocortical projection to the paravermal cortex of lobule Vb/c in the cat. Exp Brain Res 80(2):415–428. https://doi.org/10.1007/BF00228169

    Article  CAS  PubMed  Google Scholar 

  36. Cerminara NL, Garwicz M, Darch H, Houghton C, Marple-Horvat DE, Apps R. Action-based organization and function of cerebellar cortical microcircuits. bioRxiv 2020.04.04.025387. https://doi.org/10.1101/2020.04.04.025387

  37. Koutsikou S, Watson TC, Crook JJ, Leith JL, Lawrenson CL, Apps R et al (2015) The periaqueductal gray orchestrates sensory and motor circuits at multiple levels of the Neuraxis. J Neurosci 35(42):14132–14147. https://doi.org/10.1523/jneurosci.0261-15.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Garwicz M, Ekerot CF (1994) Topographical organization of the cerebellar cortical projection to nucleus interpositus anterior in the cat. J Physiol 474(2):245–260. https://doi.org/10.1113/jphysiol.1994.sp020017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Apps R, Lee S (2002) Central regulation of cerebellar climbing fibre input during motor learning. J Physiol 541(Pt 1):301–317. https://doi.org/10.1113/jphysiol.2002.016717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pardoe J, Edgley SA, Drew T, Apps R (2004) Changes in excitability of ascending and descending inputs to cerebellar climbing fibers during locomotion. J Neurosci 24(11):2656–2666. https://doi.org/10.1523/JNEUROSCI.1659-03.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Apps R (1990) Columnar organisation of the inferior olive projection to the posterior lobe of the rat cerebellum. J Comp Neurol 302(2):236–254. https://doi.org/10.1002/cne.903020205

    Article  CAS  PubMed  Google Scholar 

  42. Trott JR, Apps R (1993) Zonal organization within the projection from the inferior olive to the rostral paramedian lobule of the cat cerebellum. Eur J Neurosci 5(2):162–173. https://doi.org/10.1111/j.1460-9568.1993.tb00482.x

    Article  CAS  PubMed  Google Scholar 

  43. Herrero L, Pardoe J, Cerminara NL, Apps R (2012) Spatial localization and projection densities of brainstem mossy fibre afferents to the forelimb C1 zone of the rat cerebellum. Eur J Neurosci 35(4):539–549. https://doi.org/10.1111/j.1460-9568.2011.07977.x

    Article  PubMed  Google Scholar 

  44. King VM, Armstrong DM, Apps R, Trott JR (1998) Numerical aspects of pontine, lateral reticular, and inferior olivary projections to two paravermal cortical zones of the cat cerebellum. J Comp Neurol 390(4):537–551

    Article  CAS  Google Scholar 

  45. Odeh F, Ackerley R, Bjaalie JG, Apps R (2005) Pontine maps linking somatosensory and cerebellar cortices are in register with climbing fiber somatotopy. J Neurosci 25(24):5680–5690. https://doi.org/10.1523/jneurosci.0558-05.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Herrero L, Yu M, Walker F, Armstrong DM, Apps R (2006) Olivo-cortico-nuclear localizations within crus I of the cerebellum. J Comp Neurol 497(2):287–308. https://doi.org/10.1002/cne.20976

    Article  PubMed  Google Scholar 

  47. Andersson G, Eriksson L (1981) Spinal, trigeminal, and cortical climbing fibre paths to the lateral vermis of the cerebellar anterior lobe in the cat. Exp Brain Res 44(1):71–81. https://doi.org/10.1007/bf00238750

    Article  CAS  PubMed  Google Scholar 

  48. Andersson G, Oscarsson O (1978) Climbing fiber microzones in cerebellar vermis and their projection to different groups of cells in the lateral vestibular nucleus. Exp Brain Res 32(4):565–579. https://doi.org/10.1007/bf00239553

    Article  CAS  PubMed  Google Scholar 

  49. Ekerot CF, Garwicz M, Schouenborg J (1991) Topography and nociceptive receptive fields of climbing fibres projecting to the cerebellar anterior lobe in the cat. J Physiol 441:257–274. https://doi.org/10.1113/jphysiol.1991.sp018750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hesslow G (1994) Correspondence between climbing fibre input and motor output in eyeblink-related areas in cat cerebellar cortex. J Physiol 476(2):229–244. https://doi.org/10.1113/jphysiol.1994.sp020126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jorntell H, Garwicz M, Ekerot CF (1996) Relation between cutaneous receptive fields and muscle afferent input to climbing fibres projecting to the cerebellar C3 zone in the cat. Eur J Neurosci 8(8):1769–1779. https://doi.org/10.1111/j.1460-9568.1996.tb01320.x

    Article  CAS  PubMed  Google Scholar 

  52. Armstrong DM, Eccles JC, Harvey RJ, Matthews PB (1968) Responses in the dorsal accessory olive of the cat to stimulation of hind limb afferents. J Physiol 194(1):125–145. https://doi.org/10.1113/jphysiol.1968.sp008398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Eccles JC, Provini L, Strata P, Taborikova H (1968) Topographical investigations on the climbing fiber inputs from forelimb and hindlimb afferents to the cerebellar anterior lobe. Exp Brain Res 6(3):195–215. https://doi.org/10.1007/BF00235124

    Article  CAS  PubMed  Google Scholar 

  54. Morissette J, Bower JM (1996) Contribution of somatosensory cortex to responses in the rat cerebellar granule cell layer following peripheral tactile stimulation. Exp Brain Res 109(2):240–250. https://doi.org/10.1007/BF00231784

    Article  CAS  PubMed  Google Scholar 

  55. Cerminara NL, Apps R (2011) Behavioural significance of cerebellar modules. Cerebellum 10(3):484–494. https://doi.org/10.1007/s12311-010-0209-2

    Article  PubMed  Google Scholar 

  56. Ackerley R, Pardoe J, Apps R (2006) A novel site of synaptic relay for climbing fibre pathways relaying signals from the motor cortex to the cerebellar cortical C1 zone. J Physiol 576(Pt 2):503–518. https://doi.org/10.1113/jphysiol.2006.114215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Apps R, Hartell NA, Armstrong DM (1995) Step phase-related excitability changes in spino-olivocerebellar paths to the c1 and c3 zones in cat cerebellum. J Physiol 483(Pt 3):687–702. https://doi.org/10.1113/jphysiol.1995.sp020614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Apps R, Trott JR (1997) Topographical organisation within the lateral reticular nucleus mossy fibre projection to the c1 and c2 zones in the rostral paramedian lobule of the cat cerebellum. J Comp Neurol 381(2):175–187

    Article  CAS  Google Scholar 

  59. Apps R, Trott JR, Dietrichs E (1991) A study of branching in the projection from the inferior olive to the x and lateral c1 zones of the cat cerebellum using a combined electrophysiological and retrograde fluorescent double-labelling technique. Exp Brain Res 87(1):141–152. https://doi.org/10.1007/BF00228515

    Article  CAS  PubMed  Google Scholar 

  60. Edge AL, Marple-Horvat DE, Apps R (2003) Lateral cerebellum: functional localization within crus I and correspondence to cortical zones. Eur J Neurosci 18(6):1468–1485. https://doi.org/10.1046/j.1460-9568.2003.02873.x

    Article  PubMed  Google Scholar 

  61. Garwicz M (1997) Sagittal zonal organization of climbing fibre input to the cerebellar anterior lobe of the ferret. Exp Brain Res 117(3):389–398. https://doi.org/10.1007/s002210050233

    Article  CAS  PubMed  Google Scholar 

  62. Jorntell H, Ekerot C, Garwicz M, Luo XL (2000) Functional organization of climbing fibre projection to the cerebellar anterior lobe of the rat. J Physiol 522(Pt 2):297–309. https://doi.org/10.1111/j.1469-7793.2000.00297.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Mostofi A, Holtzman T, Grout AS, Yeo CH, Edgley SA (2010) Electrophysiological localization of eyeblink-related microzones in rabbit cerebellar cortex. J Neurosci 30(26):8920–8934. https://doi.org/10.1523/JNEUROSCI.6117-09.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Oscarsson O (1969) Termination and functional organization of the dorsal spino-olivocerebellar path. J Physiol 200(1):129–149. https://doi.org/10.1113/jphysiol.1969.sp008685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Oscarsson O, Sjolund B (1977) The ventral spine-olivocerebellar system in the cat. II. Termination zones in the cerebellar posterior lobe. Exp Brain Res 28(5):487–503. https://doi.org/10.1007/BF00236472

    Article  CAS  PubMed  Google Scholar 

  66. Oscarsson O, Sjolund B (1977) The ventral spino-olivocerebellar system in the cat. I. Identification of five paths and their termination in the cerebellar anterior lobe. Exp Brain Res 28(5):469–486. https://doi.org/10.1007/BF00236471

    Article  CAS  PubMed  Google Scholar 

  67. Pijpers A, Ruigrok TJ (2006) Organization of pontocerebellar projections to identified climbing fiber zones in the rat. J Comp Neurol 496(4):513–528. https://doi.org/10.1002/cne.20940

    Article  PubMed  Google Scholar 

  68. Trott JR, Apps R (1991) Lateral and medial sub-divisions within the olivocerebellar zones of the paravermal cortex in lobule Vb/c of the cat anterior lobe. Exp Brain Res 87(1):126–140. https://doi.org/10.1007/BF00228514

    Article  CAS  PubMed  Google Scholar 

  69. Trott JR, Apps R, Armstrong DM (1998) Zonal organization of cortico-nuclear and nucleo-cortical projections of the paramedian lobule of the cat cerebellum. 2. The C2 zone. Exp Brain Res 118(3):316–330. https://doi.org/10.1007/s002210050286

    Article  CAS  PubMed  Google Scholar 

  70. Trott JR, Apps R, Armstrong DM (1998) Zonal organization of cortico-nuclear and nucleo-cortical projections of the paramedian lobule of the cat cerebellum. 1. The C1 zone. Exp Brain Res 118(3):298–315. https://doi.org/10.1007/s002210050285

    Article  CAS  PubMed  Google Scholar 

  71. Trott JR, Armstrong DM (1987) The cerebellar corticonuclear projection from lobule Vb/c of the cat anterior lobe: a combined electrophysiological and autoradiographic study. II. Projections from the vermis. Exp Brain Res 68(2):339–354. https://doi.org/10.1007/BF00248800

    Article  CAS  PubMed  Google Scholar 

  72. Trott JR, Armstrong DM (1987) The cerebellar corticonuclear projection from lobule Vb/c of the cat anterior lobe: a combined electrophysiological and autoradiographic study. I. Projections from the intermediate region. Exp Brain Res 66(2):318–338. https://doi.org/10.1007/BF00243308

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Richard Apps or Nadia L. Cerminara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Apps, R., Lawrenson, C.L., Paci, E., Cerminara, N.L. (2022). Mapping Structure–Function Relationships within Cerebellar Circuits. In: Sillitoe, R.V. (eds) Measuring Cerebellar Function. Neuromethods, vol 177. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2026-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2026-7_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2025-0

  • Online ISBN: 978-1-0716-2026-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics