Skip to main content

Optogenetics in Complex Model Systems (Non-Human Primate)

  • Protocol
  • First Online:
Measuring Cerebellar Function

Part of the book series: Neuromethods ((NM,volume 177))

Abstract

Primates use rapid eye movements, called saccades, to scan their surroundings. Most of the well-studied neuronal elements that generate saccades are located in the brainstem, but recently our labs and others showed that the midline cerebellum is required for the production of accurate and stereotypical saccades. This oculomotor cerebellum receives mossy fiber inputs from saccade-related areas in the brainstem and sends its outputs to the brainstem saccade burst generator. How Purkinje cell simple spike activity is formed, and how the activity affects the movement in real-time are not well understood. In this chapter, we describe techniques to address these questions. Using optogenetics we manipulate the simple spike activity of cerebellar Purkinje cells while the saccade is ongoing. We also express optogenetic opsin to inhibit a subset of mossy fiber inputs to the cerebellum and examine the effects of the inhibition on simple spike activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fuchs AF, Kaneko CR, Scudder CA (1985) Brainstem control of saccadic eye movements. Annu Rev Neurosci 8:307–337

    Article  CAS  PubMed  Google Scholar 

  2. Becker W (1989) The neurobiology of saccadic eye movements. Rev Oculomot Res 3:13–67

    CAS  PubMed  Google Scholar 

  3. Gandhi NJ, Katnani HA (2011) Motor functions of the superior colliculus. Annu Rev Neurosci 34:205–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Büttner-Ennever JA (2006) Neuroanatomy of the oculomotor system. Preface. Prog Brain Res 151:vii–viii

    Article  PubMed  Google Scholar 

  5. Kaneko CR (1997) Eye movement deficits after ibotenic acid lesions of the nucleus prepositus hypoglossi in monkeys. I. Saccades and fixation. J Neurophysiol 78(4):1753–1768

    Article  CAS  PubMed  Google Scholar 

  6. Goldman MS et al (2002) Linear regression of eye velocity on eye position and head velocity suggests a common oculomotor neural integrator. J Neurophysiol 88(2):659–665

    Article  PubMed  Google Scholar 

  7. Shadmehr R (2017) Distinct neural circuits for control of movement vs. holding still. J Neurophysiol 117(4):1431–1460

    Article  PubMed  PubMed Central  Google Scholar 

  8. Scudder CA, Kaneko CS, Fuchs AF (2002) The brainstem burst generator for saccadic eye movements: a modern synthesis. Exp Brain Res 142(4):439–462

    Article  PubMed  Google Scholar 

  9. Sylvestre PA, Cullen KE (1999) Quantitative analysis of abducens neuron discharge dynamics during saccadic and slow eye movements. J Neurophysiol 82(5):2612–2632

    Article  CAS  PubMed  Google Scholar 

  10. Barton EJ et al (2003) Effects of partial lidocaine inactivation of the paramedian pontine reticular formation on saccades of macaques. J Neurophysiol 90(1):372–386

    Article  PubMed  Google Scholar 

  11. Sparks DL, Mays LE, Porter JD (1987) Eye movements induced by pontine stimulation: interaction with visually triggered saccades. J Neurophysiol 58(2):300–318

    Article  CAS  PubMed  Google Scholar 

  12. Keller EL, Gandhi NJ, Shieh JM (1996) Endpoint accuracy in saccades interrupted by stimulation in the omnipause region in monkey. Vis Neurosci 13(6):1059–1067

    Article  CAS  PubMed  Google Scholar 

  13. Scudder CA, Fuchs AF, Langer TP (1988) Characteristics and functional identification of saccadic inhibitory burst neurons in the alert monkey. J Neurophysiol 59(5):1430–1454

    Article  CAS  PubMed  Google Scholar 

  14. Fuchs AF, Scudder CA, Kaneko CR (1988) Discharge patterns and recruitment order of identified motoneurons and internuclear neurons in the monkey abducens nucleus. J Neurophysiol 60(6):1874–1895

    Article  CAS  PubMed  Google Scholar 

  15. Luschei ES, Fuchs AF (1972) Activity of brain stem neurons during eye movements of alert monkeys. J Neurophysiol 35(4):445–461

    Article  CAS  PubMed  Google Scholar 

  16. Scudder CA (1988) A new local feedback model of the saccadic burst generator. J Neurophysiol 59(5):1455–1475

    Article  CAS  PubMed  Google Scholar 

  17. Van Gisbergen JA, Robinson DA, Gielen S (1981) A quantitative analysis of generation of saccadic eye movements by burst neurons. J Neurophysiol 45(3):417–442

    Article  PubMed  Google Scholar 

  18. Mays LE, Sparks DL (1980) Dissociation of visual and saccade-related responses in superior colliculus neurons. J Neurophysiol 43(1):207–232

    Article  CAS  PubMed  Google Scholar 

  19. Soetedjo R, Kaneko CR, Fuchs AF (2002) Evidence that the superior colliculus participates in the feedback control of saccadic eye movements. J Neurophysiol 87(2):679–695

    Article  PubMed  Google Scholar 

  20. Lee C, Rohrer WH, Sparks DL (1988) Population coding of saccadic eye movements by neurons in the superior colliculus. Nature 332(6162):357–360

    Article  CAS  PubMed  Google Scholar 

  21. Vilis T, Hore J (1981) Characteristics of saccadic dysmetria in monkeys during reversible lesions of medial cerebellar nuclei. J Neurophysiol 46(4):828–838

    Article  CAS  PubMed  Google Scholar 

  22. Ritchie L (1976) Effects of cerebellar lesions on saccadic eye movements. J Neurophysiol 39(6):1246–1256

    Article  CAS  PubMed  Google Scholar 

  23. Noda H, Sugita S, Ikeda Y (1990) Afferent and efferent connections of the oculomotor region of the fastigial nucleus in the macaque monkey. J Comp Neurol 302(2):330–348

    Article  CAS  PubMed  Google Scholar 

  24. Yamada J, Noda H (1987) Afferent and efferent connections of the oculomotor cerebellar vermis in the macaque monkey. J Comp Neurol 265(2):224–241

    Article  CAS  PubMed  Google Scholar 

  25. Kralj-Hans I et al (2007) Independent roles for the dorsal paraflocculus and vermal lobule VII of the cerebellum in visuomotor coordination. Exp Brain Res 177(2):209–222

    Article  PubMed  Google Scholar 

  26. Thielert CD, Thier P (1993) Patterns of projections from the pontine nuclei and the nucleus reticularis tegmenti pontis to the posterior vermis in the rhesus monkey: a study using retrograde tracers. J Comp Neurol 337(1):113–126

    Article  CAS  PubMed  Google Scholar 

  27. Scudder CA, DM MG (2000) Connections of monkey saccade-related fastigial nucleus neurons revealed by anatomical and physiological methods. Soc Neurosci Abstr 26:97

    Google Scholar 

  28. Optican LM, Robinson DA (1980) Cerebellar-dependent adaptive control of primate saccadic system. J Neurophysiol 44(6):1058–1076

    Article  CAS  PubMed  Google Scholar 

  29. Barash S et al (1999) Saccadic dysmetria and adaptation after lesions of the cerebellar cortex. J Neurosci 19(24):10931–10939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Takagi M, Zee DS, Tamargo RJ (1998) Effects of lesions of the oculomotor vermis on eye movements in primate: saccades. J Neurophysiol 80(4):1911–1931

    Article  CAS  PubMed  Google Scholar 

  31. Robinson FR, Straube A, Fuchs AF (1993) Role of the caudal fastigial nucleus in saccade generation. II. Effects of muscimol inactivation. J Neurophysiol 70(5):1741–1758

    Article  CAS  PubMed  Google Scholar 

  32. Iwamoto Y, Yoshida K (2002) Saccadic dysmetria following inactivation of the primate fastigial oculomotor region. Neurosci Lett 325(3):211–215

    Article  CAS  PubMed  Google Scholar 

  33. Kojima Y, Soetedjo R, Fuchs AF (2010) Effects of GABA agonist and antagonist injections into the oculomotor vermis on horizontal saccades. Brain Res 1366:93–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Noda H, Murakami S, Warabi T (1991) Effects of fastigial stimulation upon visually-directed saccades in macaque monkeys. Neurosci Res 10(3):188–199

    Article  CAS  PubMed  Google Scholar 

  35. Keller EL, Slakey DP, Crandall WF (1983) Microstimulation of the primate cerebellar vermis during saccadic eye movements. Brain Res 288(1–2):131–143

    Article  CAS  PubMed  Google Scholar 

  36. Ohtsuka K, Noda H (1991) Saccadic burst neurons in the oculomotor region of the fastigial nucleus of macaque monkeys. J Neurophysiol 65(6):1422–1434

    Article  CAS  PubMed  Google Scholar 

  37. Soetedjo R, Kojima Y, Fuchs AF (2019) How cerebellar motor learning keeps saccades accurate. J Neurophysiol 121(6):2153–2162

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kojima Y, Soetedjo R, Fuchs AF (2010) Changes in simple spike activity of some Purkinje cells in the oculomotor vermis during saccade adaptation are appropriate to participate in motor learning. J Neurosci 30(10):3715–3727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ohtsuka K, Noda H (1995) Discharge properties of Purkinje cells in the oculomotor vermis during visually guided saccades in the macaque monkey. J Neurophysiol 74(5):1828–1840

    Article  CAS  PubMed  Google Scholar 

  40. Herzfeld DJ et al (2015) Encoding of action by the Purkinje cells of the cerebellum. Nature 526(7573):439–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sun Z et al (2016) Individual neurons in the caudal fastigial oculomotor region convey information on both macro- and microsaccades. Eur J Neurosci 44(8):2531–2542

    Article  PubMed  Google Scholar 

  42. Herzfeld DJ, Shadmehr R (2016) Cerebellar output encodes a corrective saccadic command (commentary on Sun et al.). Eur J Neurosci 44(8):2528–2530

    Article  PubMed  Google Scholar 

  43. Buzunov E et al (2013) When during horizontal saccades in monkey does cerebellar output affect movement? Brain Res 1503:33–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fuchs AF, Robinson FR, Straube A (1993) Role of the caudal fastigial nucleus in saccade generation. I. Neuronal discharge pattern. J Neurophysiol 70(5):1723–1740

    Article  CAS  PubMed  Google Scholar 

  45. Crandall WF, Keller EL (1985) Visual and oculomotor signals in nucleus reticularis tegmenti pontis in alert monkey. J Neurophysiol 54(5):1326–1345

    Article  CAS  PubMed  Google Scholar 

  46. Dean P, Porrill J (2011) Evaluating the adaptive-filter model of the cerebellum. J Physiol 589(Pt 14):3459–3470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Eccles JC, Ito M, Szentágothai J (1967) The cerebellum as a neuronal machine. Springer, Berlin Heidelberg

    Book  Google Scholar 

  48. Isope P, Barbour B (2002) Properties of unitary granule cell-->Purkinje cell synapses in adult rat cerebellar slices. J Neurosci 22(22):9668–9678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fuchs AF, Robinson DA (1966) A method for measuring horizontal and vertical eye movement chronically in the monkey. J Appl Physiol 21(3):1068–1070

    Article  CAS  PubMed  Google Scholar 

  50. Judge SJ, Richmond BJ, Chu FC (1980) Implantation of magnetic search coils for measurement of eye position: an improved method. Vis Res 20(6):535–538

    Article  CAS  PubMed  Google Scholar 

  51. Robinson DA (1963) A method of measuring eye movement using a scleral search coil in a magnetic field. IEEE Trans Biomed Eng 10:137–145

    CAS  PubMed  Google Scholar 

  52. Meade ML (1983) Lock-in amplifiers : principles and applications. P. Peregrinus on behalf of the Institution of Electrical Engineers, London

    Google Scholar 

  53. McElligott JG, Loughnane MH, Mays LE (1979) The use of synchronous demodulation for the measurement of eye movements by means of an ocular magnetic search coil. IEEE Trans Biomed Eng BME-26(6):370–374

    Article  Google Scholar 

  54. Soetedjo R, Kojima Y, Fuchs AF (2008) Complex spike activity in the oculomotor vermis of the cerebellum: a vectorial error signal for saccade motor learning? J Neurophysiol 100(4):1949–1966

    Article  PubMed  PubMed Central  Google Scholar 

  55. National Research Council (2011) Guide for the Care and Use of Laboratory Animals, 8th edn. The National Academies Press, Washington, DC, p 246

    Google Scholar 

  56. Kozai TD, Vazquez AL (2015) Photoelectric artefact from optogenetics and imaging on microelectrodes and bioelectronics: new challenges and opportunities. J Mater Chem B 3(25):4965–4978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Horowitz P, Hill W (2015) The art of electronics. Cambridge University Press, Cambridge

    Google Scholar 

  58. Chkalov RD, Kochuev, Vasilchenkova D (2019) Precision medium-power laser diode drivers: design principles and functional features. in 2019 International Russian Automation Conference (RusAutoCon)

    Google Scholar 

  59. El-Shamayleh Y et al (2017) Selective optogenetic control of purkinje cells in monkey cerebellum. Neuron 95(1):51–62.e4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Prsa M et al (2009) Characteristics of responses of Golgi cells and mossy fibers to eye saccades and saccadic adaptation recorded from the posterior vermis of the cerebellum. J Neurosci 29(1):250–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kojima Y, Soetedjo R, Fuchs AF (2010) Behavior of the oculomotor vermis for five different types of saccade. J Neurophysiol 104(6):3667–3676

    Article  PubMed  PubMed Central  Google Scholar 

  62. Sedaghat-Nejad E et al (2019) Behavioral training of marmosets and electrophysiological recording from the cerebellum. J Neurophysiol 122(4):1502–1517

    Article  PubMed  PubMed Central  Google Scholar 

  63. Soetedjo R, Fuchs AF (2006) Complex spike activity of purkinje cells in the oculomotor vermis during behavioral adaptation of monkey saccades. J Neurosci 26(29):7741–7755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Fuchs AF (1967) Saccadic and smooth pursuit eye movements in the monkey. J Physiol 191(3):609–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Harting JK (1977) Descending pathways from the superior collicullus: an autoradiographic analysis in the rhesus monkey (Macaca mulatta). J Comp Neurol 173(3):583–612

    Article  CAS  PubMed  Google Scholar 

  66. Kaneko CR, Fuchs AF (2006) Effect of pharmacological inactivation of nucleus reticularis tegmenti pontis on saccadic eye movements in the monkey. J Neurophysiol 95(6):3698–3711

    Article  PubMed  Google Scholar 

  67. Mattis J et al (2011) Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins. Nat Methods 9(2):159–172

    Article  PubMed  PubMed Central  Google Scholar 

  68. Masoli S et al (2020) Parameter tuning differentiates granule cell subtypes enriching transmission properties at the cerebellum input stage. Commun Biol 3(1):222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Our studies described here were supported by National Institute of Health grants: EY028902 (RS), EY023277 (YK), OD010425, RR00166 (Washington National Primate Research Center), P30EY001730 (Vision Research Core of UW), and National Science Foundation BCS-1724176 (RS, YK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robijanto Soetedjo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Soetedjo, R., Kojima, Y. (2022). Optogenetics in Complex Model Systems (Non-Human Primate). In: Sillitoe, R.V. (eds) Measuring Cerebellar Function. Neuromethods, vol 177. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2026-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2026-7_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2025-0

  • Online ISBN: 978-1-0716-2026-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics