Skip to main content

Molecular Tools to Study Regeneration of the Avian Cochlea and Utricle

  • Protocol
  • First Online:
Developmental, Physiological, and Functional Neurobiology of the Inner Ear

Part of the book series: Neuromethods ((NM,volume 176))

Abstract

The avian inner ear can regenerate sensory hair cells after damage and has served as a model for the study of hearing regeneration for more than 30 years. Here we present a detailed surgical protocol to induce rapid apoptosis of all hair cells in the chicken cochlea and utricle with a single, local infusion of the aminoglycoside sisomicin. S-phase entry of supporting cells engaged in proliferative regeneration peaks at 48 h and newly regenerated hair cells emerge as early as 4–5 days post-sisomicin. We provide reliable read-outs for hair cell loss, such as overt manifestations of vestibular deficiencies, and quick validation of regeneration using reliable markers that can be detected with commercial antibodies. Titrating down the dose of sisomicin reveals differential susceptibilities of hair cell subtypes: cochlea versus utricle, cochlear tall versus cochlear short hair cells, vestibular type I versus type II hair cells, and proximal versus distal location along the cochlea. We provide a method to quantitate cells within the sensory epithelium in 3D, leveraging vibratome sectioning and imaging methods that are presented in a companion chapter. Finally, we present the technique of cold-peeling the cochlear sensory epithelium for the purposes of RNA or protein extraction, and single-cell dissociation in preparation for RNA-seq.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that new hair cells can also be specifically marked by strong expression of CALB2 and TUBB3, which are not expressed in controls. By contrast, antibodies to OTOF do not label new hair cells as intensely as controls (Fig. 4c).

References

  1. Benkafadar N et al (2021) Transcriptomic characterization of dying hair cells in the avian cochlea. Cell Rep 34(12):108902

    Article  CAS  PubMed  Google Scholar 

  2. Scheibinger M, Janesick A, Diaz GH, Heller S (2021) Immunohistochemistry and in situ mRNA detection using inner ear vibratome sections. Neuromethods (submitted)

    Google Scholar 

  3. Ellwanger DC et al (2018) Transcriptional dynamics of hair-bundle morphogenesis revealed with CellTrails. Cell Rep 23(10):2901–2914.e14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Janesick AS et al (2021) Cell type identity of the avian cochlea. Cell Rep 34(12):108900

    Article  CAS  PubMed  Google Scholar 

  5. Goodyear RJ et al (2010) Identification of the hair cell soma-1 antigen, HCS-1, as otoferlin. J Assoc Res Otolaryngol 11(4):573–586

    Article  PubMed  PubMed Central  Google Scholar 

  6. Peng HB (1991) Xenopus laevis: practical uses in cell and molecular biology. Solutions and protocols. Methods Cell Biol 36:102

    Google Scholar 

  7. Suzuki J et al (2017) Cochlear gene therapy with ancestral AAV in adult mice: complete transduction of inner hair cells without cochlear dysfunction. Sci Rep 7:45524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Talaei S et al (2019) Dye tracking following posterior semicircular canal or round window membrane injections suggests a role for the cochlea aqueduct in modulating distribution. Front Cell Neurosci 13:471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bissonnette JP, Fekete DM (1996) Standard atlas of the gross anatomy of the developing inner ear of the chicken. J Comp Neurol 368(4):620–630

    Article  CAS  PubMed  Google Scholar 

  10. Skrzat J, Wrobel A, Walocha J (2013) A preliminary study of three-dimensional reconstruction of the human osseous labyrinth from micro-computed tomography scans. Folia Morphol (Warsz) 72(1):17–21

    Article  Google Scholar 

  11. Grahek R, Zupancic-Kralj L (2009) Identification of gentamicin impurities by liquid chromatography tandem mass spectrometry. J Pharm Biomed Anal 50(5):1037–1043

    Article  CAS  PubMed  Google Scholar 

  12. O’Sullivan ME et al (2020) Dissociating antibacterial from ototoxic effects of gentamicin C-subtypes. Proc Natl Acad Sci U S A 117(51):32423–32432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kitasato I et al (1990) Comparative ototoxicity of ribostamycin, dactimicin, dibekacin, kanamycin, amikacin, tobramycin, gentamicin, sisomicin and netilmicin in the inner ear of guinea pigs. Chemotherapy 36(2):155–168

    Article  CAS  PubMed  Google Scholar 

  14. Zakir M, Dickman JD (2006) Regeneration of vestibular otolith afferents after ototoxic damage. J Neurosci 26(11):2881–2893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cafaro J, Lee GS, Stone JS (2007) Atoh1 expression defines activated progenitors and differentiating hair cells during avian hair cell regeneration. Dev Dyn 236(1):156–170

    Article  CAS  PubMed  Google Scholar 

  16. Scheibinger M et al (2018) Aminoglycoside damage and hair cell regeneration in the chicken utricle. J Assoc Res Otolaryngol 19(1):17–29

    Article  PubMed  Google Scholar 

  17. Bhave SA et al (1995) Cell cycle progression in gentamicin-damaged avian cochleas. J Neurosci 15(6):4618–4628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Amanda Janesick or Stefan Heller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Janesick, A., Scheibinger, M., Heller, S. (2022). Molecular Tools to Study Regeneration of the Avian Cochlea and Utricle. In: Groves, A.K. (eds) Developmental, Physiological, and Functional Neurobiology of the Inner Ear. Neuromethods, vol 176. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2022-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2022-9_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2021-2

  • Online ISBN: 978-1-0716-2022-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics