Skip to main content

Behavioral Models Loudness, Hyperacusis, and Sound Avoidance

  • Protocol
  • First Online:
Developmental, Physiological, and Functional Neurobiology of the Inner Ear

Part of the book series: Neuromethods ((NM,volume 176))

Abstract

Loudness is the subjective perception of an acoustic stimulus that is most closely correlated with sound intensity. The dynamic range of loudness perception spans more than 120 dB, but how the auditory system is able to encode this information remains largely a mystery. Hearing loss and other medical conditions can disrupt intensity coding, often leading to loudness recruitment or in some cases hyperacusis, a sometimes debilitating condition in which moderate intensity sounds are perceived as intolerably loud, which evoke fear or instill sound avoidance. Insights into the neural mechanisms that give rise to normal or aberrant loudness perception can be aided by the development of animal models that can “tell the auditory physiologist” just how loud, annoying, or aversive a sound is. These behavioral measures of loudness can then be correlated with various electrophysiological or brain imaging metrics to the acoustic properties of the sound. In this chapter, we describe an operant behavioral technique for measuring reaction time-intensity functions that has proved to be highly effective in assessing the normal growth of loudness and two abnormal forms of loudness growth, recruitment, and hyperacusis. We also describe another behavioral technique to test for sound avoidance that takes advantage of a rodent’s innate aversion to brightly illuminated open spaces. Novel methods for inducing loudness recruitment, hyperacusis, and sound aversion are also described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABR :

Auditory brainstem response

ASAP:

Active sound avoidance paradigm

HL:

Hearing level

RT:

Reaction time

RT-I:

Reaction time-intensity

SPL:

Sound pressure level

ULL:

Uncomfortable loudness level

References

  1. Zwicker A, Flottorp G, Stevens S (1957) Critical bandwidth in loudness summation. J Acoust Soc Am 29:548–557

    Article  Google Scholar 

  2. Robinson DW, Dadson RS (1956) A re-determination of the equal loudness relations for pure tones. Br J Appl Phys 7:166–181

    Article  Google Scholar 

  3. Franks JR, Stephenson MMD, Merry CJ (1996) Preventing occupational hearing loss: a practical guide. DHHS(NIOSH) publication, vol 96-110. U.S. Dept. of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Division of Biomedical and Behavioral Science, Physical Agents Effects Branch, Bethesda, MD

    Google Scholar 

  4. Simpson AJ, Reiss JD (2013) The dynamic range paradox: a central auditory model of intensity change detection. PLoS One 8(2):e57497. https://doi.org/10.1371/journal.pone.0057497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Moore BC, Glasberg BR (2004) A revised model of loudness perception applied to cochlear hearing loss. Hear Res 188(1–2):70–88. https://doi.org/10.1016/S0378-5955(03)00347-2

    Article  PubMed  Google Scholar 

  6. Zeng FG, Kong YY, Michalewski HJ, Starr A (2005) Perceptual consequences of disrupted auditory nerve activity. J Neurophysiol 93(6):3050–3063. https://doi.org/10.1152/jn.00985.2004

    Article  PubMed  Google Scholar 

  7. Dean I, Harper NS, McAlpine D (2005) Neural population coding of sound level adapts to stimulus statistics. Nat Neurosci 8(12):1684–1689. https://doi.org/10.1038/nn1541

    Article  CAS  PubMed  Google Scholar 

  8. Zwislocki JJ (1995) Cochlear precursors of neural pitch and loudness codes. Ann Otol Rhinol Laryngol Suppl 166:12–15

    CAS  PubMed  Google Scholar 

  9. Radziwon K, Auerbach BD, Ding D, Liu X, Chen GD, Salvi R (2019) Noise-induced loudness recruitment and hyperacusis: insufficient central gain in auditory cortex and amygdala. Neuroscience 422:212–227. https://doi.org/10.1016/j.neuroscience.2019.09.010

    Article  CAS  PubMed  Google Scholar 

  10. Fowler EP (1965) Some attributes of “loudness recruitment” and “loudness decruitment”. Trans Am Otol Soc 53:78–84

    CAS  PubMed  Google Scholar 

  11. Smith PA, Ferguson MA (1994) Comparison of measures of frequency resolution and recruitment in patients undergoing neuro-otological investigation. Br J Audiol 28(3):155–167

    Article  CAS  Google Scholar 

  12. Fritze W (1980) The graph of loudness recruitment (ABLB-test). Arch Otorhinolaryngol 226(1–2):11–13

    Article  CAS  Google Scholar 

  13. Knight KK, Margolis RH (1984) Magnitude estimation of loudness. II: loudness perception in presbycusic listeners. J Speech Hear Res 27(1):28–32

    Article  CAS  Google Scholar 

  14. Baguley DM (2003) Hyperacusis. J R Soc Med 96(12):582–585. https://doi.org/10.1258/jrsm.96.12.582

    Article  PubMed  PubMed Central  Google Scholar 

  15. Andersson G, Lindvall N, Hursti T, Carlbring P (2002) Hypersensitivity to sound (hyperacusis): a prevalence study conducted via the Internet and post. Int J Audiol 41(8):545–554. https://doi.org/10.3109/14992020209056075

    Article  PubMed  Google Scholar 

  16. Gu JW, Halpin CF, Nam EC, Levine RA, Melcher JR (2010) Tinnitus, diminished sound-level tolerance, and elevated auditory activity in humans with clinically normal hearing sensitivity. J Neurophysiol 104(6):3361–3370. https://doi.org/10.1152/jn.00226.2010

    Article  PubMed  PubMed Central  Google Scholar 

  17. Tyler RS, Pienkowski M, Roncancio ER, Jun HJ, Brozoski T, Dauman N, Dauman N, Andersson G, Keiner AJ, Cacace AT, Martin N, Moore BC (2014) A review of hyperacusis and future directions: part I. Definitions and manifestations. Am J Audiol 23(4):402–419. https://doi.org/10.1044/2014_AJA-14-0010

    Article  PubMed  Google Scholar 

  18. Sheldrake J, Diehl PU, Schaette R (2015) Audiometric characteristics of hyperacusis patients. Front Neurol 6:105. https://doi.org/10.3389/fneur.2015.00105

    Article  PubMed  PubMed Central  Google Scholar 

  19. Sherlock LP, Formby C (2005) Estimates of loudness, loudness discomfort, and the auditory dynamic range: normative estimates, comparison of procedures, and test-retest reliability. J Am Acad Audiol 16(2):85–100. https://doi.org/10.3766/jaaa.16.2.4

    Article  PubMed  Google Scholar 

  20. Blaesing L, Kroener-Herwig B (2012) Self-reported and behavioral sound avoidance in tinnitus and hyperacusis subjects, and association with anxiety ratings. Int J Audiol 51(8):611–617. https://doi.org/10.3109/14992027.2012.664290

    Article  PubMed  Google Scholar 

  21. Sander K, Frome Y, Scheich H (2007) FMRI activations of amygdala, cingulate cortex, and auditory cortex by infant laughing and crying. Hum Brain Mapp 28(10):1007–1022. https://doi.org/10.1002/hbm.20333

    Article  PubMed  PubMed Central  Google Scholar 

  22. Levitin DJ, Menon V, Schmitt JE, Eliez S, White CD, Glover GH, Kadis J, Korenberg JR, Bellugi U, Reiss AL (2003) Neural correlates of auditory perception in Williams syndrome: an fMRI study. NeuroImage 18(1):74–82. https://doi.org/10.1006/nimg.2002.1297

    Article  PubMed  Google Scholar 

  23. Levitin DJ, Cole K, Lincoln A, Bellugi U (2005) Aversion, awareness, and attraction: investigating claims of hyperacusis in the Williams syndrome phenotype. J Child Psychol Psychiatry 46(5):514–523. https://doi.org/10.1111/j.1469-7610.2004.00376.x

    Article  PubMed  Google Scholar 

  24. Moller AR (2007) Neurophysiologic abnormaliteis in autism. Nova Science Publishers

    Google Scholar 

  25. LeDoux JE, Cicchetti P, Xagoraris A, Romanski LM (1990) The lateral amygdaloid nucleus: sensory interface of the amygdala in fear conditioning. J Neurosci 10(4):1062–1069

    Article  CAS  Google Scholar 

  26. Brand T, Hohmann V (2002) An adaptive procedure for categorical loudness scaling. J Acoust Soc Am 112(4):1597–1604. https://doi.org/10.1121/1.1502902

    Article  PubMed  Google Scholar 

  27. Anweiler AK, Verhey JL (2006) Spectral loudness summation for short and long signals as a function of level. J Acoust Soc Am 119(5 Pt 1):2919–2928. https://doi.org/10.1121/1.2184224

    Article  PubMed  Google Scholar 

  28. Marshall L, Brandt JF (1980) The relationship between loudness and reaction time in normal hearing listeners. Acta Otolaryngol 90(3–4):244–249. https://doi.org/10.3109/00016488009131721

    Article  CAS  PubMed  Google Scholar 

  29. Seitz PF, Rakerd B (1997) Auditory stimulus intensity and reaction time in listeners with longstanding sensorineural hearing loss. Ear Hear 18(6):502–512

    Article  CAS  Google Scholar 

  30. Schlittenlacher J, Ellermeier W, Arseneau J (2014) Binaural loudness gain measured by simple reaction time. Atten Percept Psychophys 76(5):1465–1472. https://doi.org/10.3758/s13414-014-0651-1

    Article  PubMed  Google Scholar 

  31. Moody DB (1970) Reaction time as an index of sensory function in animals. In: Stebbins WC (ed) Animal pscyhophysics: the design and conduct of sensory experiments. Appleton-Century-Crofts, New York, pp 277–301

    Chapter  Google Scholar 

  32. Moody DB (1973) Behavioral studies of noise-induced hearing loss in primates: loudness recruitment. Adv Otorhinolaryngol 20:82–101

    CAS  PubMed  Google Scholar 

  33. Pfingst BE, Hienze R, Kimm J, Miller J (1975) Reaction-time procedure for measuring hearing. I. Suprathreshold functions. J Acoust Soc Am 57:421–430

    Article  CAS  Google Scholar 

  34. Stebbins WC (1966) Auditory reaction time and the derivation of equal loudness contours for the monkey. J Exp Anal Behav 9(2):135–142. https://doi.org/10.1901/jeab.1966.9-135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Radziwon K, Salvi R (2020) Using auditory reaction time to measure loudness growth in rats. Hear Res 395:108026. https://doi.org/10.1016/j.heares.2020.108026

    Article  PubMed  Google Scholar 

  36. Radziwon K, Holfoth D, Lindner J, Kaier-Green Z, Bowler R, Urban M, Salvi R (2017) Salicylate-induced hyperacusis in rats: dose- and frequency-dependent effects. Hear Res 350:133–138. https://doi.org/10.1016/j.heares.2017.04.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hayes SH, Radziwon KE, Stolzberg DJ, Salvi RJ (2014) Behavioral models of tinnitus and hyperacusis in animals. Front Neurol 5:179. https://doi.org/10.3389/fneur.2014.00179

    Article  PubMed  PubMed Central  Google Scholar 

  38. Radziwon KE, Stolzberg DJ, Urban ME, Bowler RA, Salvi RJ (2015) Salicylate-induced hearing loss and gap detection deficits in rats. Front Neurol 6:31. https://doi.org/10.3389/fneur.2015.00031

    Article  PubMed  PubMed Central  Google Scholar 

  39. Buus S, Florentine M, Poulsen T (1997) Temporal integration of loudness, loudness discrimination, and the form of the loudness function. J Acoust Soc Am 101(2):669–680

    Article  CAS  Google Scholar 

  40. Cacace AT, Margolis RH (1985) On the loudness of complex stimuli and its relationship to cochlear excitation. J Acoust Soc Am 78(5):1568–1573

    Article  CAS  Google Scholar 

  41. Zwislocki JJ, Jordan HN (1986) On the relations of intensity jnd’s to loudness and neural noise. J Acoust Soc Am 79(3):772–780

    Article  CAS  Google Scholar 

  42. Derleth RP, Dau T, Kollmeier B (2001) Modeling temporal and compressive properties of the normal and impaired auditory system. Hear Res 159(1–2):132–149. https://doi.org/10.1016/s0378-5955(01)00322-7

    Article  CAS  PubMed  Google Scholar 

  43. Moore BC (1997) A compact disc containing simulations of hearing impairment. Br J Audiol 31(5):353–357. https://doi.org/10.3109/03005364000000029

    Article  CAS  PubMed  Google Scholar 

  44. Moody DB, Winger G, Woods JH, Stebbins WC (1980) Effect of ethanol and of noise on reaction time in the monkey: variation with stimulus level. Psychopharmacology 69(1):45–51. https://doi.org/10.1007/BF00426520

    Article  CAS  PubMed  Google Scholar 

  45. Stebbins WC, Coombs S (1975) Behavioral assessment of ototoxicity in nonhuman primates. In: Weiss B, Laties VG (eds) Behavioral toxicology. Springer, Boston, pp 401–427. https://doi.org/10.1007/978-1-4684-2859-9_15

    Chapter  Google Scholar 

  46. Lauer AM, Dooling RJ (2007) Evidence of hyperacusis in canaries with permanent hereditary high-frequency hearing loss. Semin Hear 28(4):319–326

    Article  Google Scholar 

  47. Mongan E, Kelly P, Nies K, Porter WW, Paulus HE (1973) Tinnitus as an indication of therapeutic serum salicylate levels. JAMA 226(2):142–145

    Article  CAS  Google Scholar 

  48. Myers EN, Bernstein JM (1965) Salicylate ototoxicity; a clinical and experimental study. Arch Otolaryngol 82(5):483–493. https://doi.org/10.1001/archotol.1965.00760010485006

    Article  CAS  PubMed  Google Scholar 

  49. Jastreboff PJ, Brennan JF, Sasaki CT (1988) An animal model for tinnitus. Laryngoscope 98(3):280–286. https://doi.org/10.1288/00005537-198803000-00008

    Article  CAS  PubMed  Google Scholar 

  50. Lobarinas E, Sun W, Cushing R, Salvi R (2004) A novel behavioral paradigm for assessing tinnitus using schedule-induced polydipsia avoidance conditioning (SIP-AC). Hear Res 190(1–2):109–114. https://doi.org/10.1016/S0378-5955(04)00019-X

    Article  PubMed  Google Scholar 

  51. Jiang C, Luo B, Manohar S, Chen GD, Salvi R (2017) Plastic changes along auditory pathway during salicylate-induced ototoxicity: hyperactivity and CF shifts. Hear Res 347:28–40. https://doi.org/10.1016/j.heares.2016.10.021

    Article  PubMed  Google Scholar 

  52. Chen YC, Li X, Liu L, Wang J, Lu CQ, Yang M, Jiao Y, Zang FC, Radziwon K, Chen GD, Sun W, Krishnan Muthaiah VP, Salvi R, Teng GJ (2015) Tinnitus and hyperacusis involve hyperactivity and enhanced connectivity in auditory-limbic-arousal-cerebellar network. elife 4:e06576. https://doi.org/10.7554/eLife.06576

    Article  PubMed  PubMed Central  Google Scholar 

  53. Auerbach BD, Radziwon K, Salvi R (2019) Testing the central gain model: loudness growth correlates with central auditory gain enhancement in a rodent model of hyperacusis. Neuroscience 407:93–107. https://doi.org/10.1016/j.neuroscience.2018.09.036

    Article  CAS  PubMed  Google Scholar 

  54. Wong E, Radziwon K, Chen GD, Liu X, Manno FA, Manno SH, Auerbach B, Wu EX, Salvi R, Lau C (2020) Functional magnetic resonance imaging of enhanced central auditory gain and electrophysiological correlates in a behavioral model of hyperacusis. Hear Res 389:107908. https://doi.org/10.1016/j.heares.2020.107908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hasson D, Theorell T, Bergquist J, Canlon B (2013) Acute stress induces hyperacusis in women with high levels of emotional exhaustion. PLoS One 8(1):e52945. https://doi.org/10.1371/journal.pone.0052945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Pienkowski M, Tyler RS, Roncancio ER, Jun HJ, Brozoski T, Dauman N, Coelho CB, Andersson G, Keiner AJ, Cacace AT, Martin N, Moore BC (2014) A review of hyperacusis and future directions: part II. Measurement, mechanisms, and treatment. Am J Audiol 23(4):420–436. https://doi.org/10.1044/2014_AJA-13-0037

    Article  PubMed  Google Scholar 

  57. Mazurek B, Haupt H, Joachim R, Klapp BF, Stover T, Szczepek AJ (2010) Stress induces transient auditory hypersensitivity in rats. Hear Res 259(1–2):55–63. https://doi.org/10.1016/j.heares.2009.10.006

    Article  PubMed  Google Scholar 

  58. Ferrero DM, Lemon JK, Fluegge D, Pashkovski SL, Korzan WJ, Datta SR, Spehr M, Fendt M, Liberles SD (2011) Detection and avoidance of a carnivore odor by prey. Proc Natl Acad Sci U S A 108(27):11235–11240. https://doi.org/10.1073/pnas.1103317108

    Article  PubMed  PubMed Central  Google Scholar 

  59. Crawley J, Goodwin FK (1980) Preliminary report of a simple animal behavior model for the anxiolytic effects of benzodiazepines. Pharmacol Biochem Behav 13(2):167–170. https://doi.org/10.1016/0091-3057(80)90067-2

    Article  CAS  PubMed  Google Scholar 

  60. Manohar S, Spoth J, Radziwon K, Auerbach BD, Salvi R (2017) Noise-induced hearing loss induces loudness intolerance in a rat Active Sound Avoidance Paradigm (ASAP). Hear Res 353:197–203. https://doi.org/10.1016/j.heares.2017.07.001

    Article  PubMed  PubMed Central  Google Scholar 

  61. Radziwon K, Auerbach BD, Kolisetti R, Beadle M, Salvi R (2018) Auditory hypersensitivity and temporal integration deficits in Fragile X rats. Paper presented at the Assoc. Res. Otolaryngology, San Diego, 9–14 Feb 2018

    Google Scholar 

  62. Chen GD, Decker B, Krishnan Muthaiah VP, Sheppard A, Salvi R (2014) Prolonged noise exposure-induced auditory threshold shifts in rats. Hear Res 317:1–8. https://doi.org/10.1016/j.heares.2014.08.004

    Article  PubMed  PubMed Central  Google Scholar 

  63. Liu X, Li L, Chen GD, Salvi R (2020) How low must you go? Effects of low-level noise on cochlear neural response. Hear Res 392:107980. https://doi.org/10.1016/j.heares.2020.107980

    Article  PubMed  Google Scholar 

  64. Zhao DL, Sheppard A, Ralli M, Liu X, Salvi R (2018) Prolonged low-level noise exposure reduces rat distortion product otoacoustic emissions above a critical level. Hear Res 370:209–216. https://doi.org/10.1016/j.heares.2018.08.002

    Article  PubMed  PubMed Central  Google Scholar 

  65. Knipper M, Van Dijk P, Nunes I, Ruttiger L, Zimmermann U (2013) Advances in the neurobiology of hearing disorders: recent developments regarding the basis of tinnitus and hyperacusis. Prog Neurobiol 111:17–33. https://doi.org/10.1016/j.pneurobio.2013.08.002

    Article  PubMed  Google Scholar 

  66. Mazurek B, Stover T, Haupt H, Klapp BF, Adli M, Gross J, Szczepek AJ (2010) The significance of stress: its role in the auditory system and the pathogenesis of tinnitus. HNO 58(2):162–172. https://doi.org/10.1007/s00106-009-2001-5

    Article  CAS  PubMed  Google Scholar 

  67. Chen YC, Chen GD, Auerbach BD, Manohar S, Radziwon K, Salvi R (2017) Tinnitus and hyperacusis: contributions of paraflocculus, reticular formation and stress. Hear Res 349:208–222. https://doi.org/10.1016/j.heares.2017.03.005

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Salvi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Salvi, R., Mauche, C., Thorner, H., Chen, GD., Manohar, S. (2022). Behavioral Models Loudness, Hyperacusis, and Sound Avoidance. In: Groves, A.K. (eds) Developmental, Physiological, and Functional Neurobiology of the Inner Ear. Neuromethods, vol 176. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2022-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2022-9_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2021-2

  • Online ISBN: 978-1-0716-2022-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics