Skip to main content

Targets and Strategies for Cancer Immunoprevention

  • Protocol
  • First Online:
Cancer Immunoprevention

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2435))

  • 1213 Accesses

Abstract

The immune system plays a key role in cancer prevention, initiation, and progression. Antitumoral immune responses can be boosted by harnessing antitumorigenic immune activators and/or blocking tumorigenic proinflammatory factors. Here we define these targets as well as the strategies that could be developed for effective cancer immunoprevention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Singh SK, Dorak MT (2017) Cancer immunoprevention and public health. Front Public Health 5:101

    Article  PubMed  PubMed Central  Google Scholar 

  2. Smit MA, Jaffee EM, Lutz ER (2014) Cancer immunoprevention—the next frontier. Cancer Prev Res 7(11):1072–1080

    Article  CAS  Google Scholar 

  3. Beatty GL, Gladney WL (2015) Immune escape mechanisms as a guide for cancer immunotherapy. Clin Cancer Res 21(4):687–692

    Article  CAS  PubMed  Google Scholar 

  4. Tanaka T, Narazaki M, Kishimoto T (2014) IL-6 in inflammation, immunity, and disease. Cold Spring Harb Perspect Biol 6(10):a016295

    Article  PubMed  PubMed Central  Google Scholar 

  5. El-Osta HE, Kurzrock R (2011) Castleman’s disease: from basic mechanisms to molecular therapeutics. Oncologist 16(4):497–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rider P, Carmi Y, Cohen I (2016) Biologics for targeting inflammatory cytokines, clinical uses, and limitations. Int J Cell Biol 2016:9259646

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Garlanda C, Dinarello CA, Mantovani A (2013) The interleukin-1 family: back to the future. Immunity 39(6):1003–1018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mantovani A, Barajon I, Garlanda C (2018) IL-1 and IL-1 regulatory pathways in cancer progression and therapy. Immunol Rev 281(1):57–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Alfaro C et al (2017) Interleukin-8 in cancer pathogenesis, treatment and follow-up. Cancer Treat Rev 60:24–31

    Article  CAS  PubMed  Google Scholar 

  10. David JM et al (2016) The IL-8/IL-8R axis: a double agent in tumor immune resistance. Vaccines 4(3)

    Google Scholar 

  11. Gales D et al (2013) The chemokine CXCL8 in carcinogenesis and drug response. ISRN Oncol 2013:859154

    PubMed  PubMed Central  Google Scholar 

  12. Roeser J, Leach S, McAllister F (2015) Emerging strategies for cancer immunoprevention. Oncogene 34(50):6029

    Article  CAS  PubMed  Google Scholar 

  13. Huang RR et al (2011) CTLA4 blockade induces frequent tumor infiltration by activated lymphocytes regardless of clinical responses in humans. Clin Cancer Res 17(12):4101–4109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hodi FS et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363(8):711–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bengsch F et al (2017) CTLA-4/CD80 pathway regulates T cell infiltration into pancreatic cancer. Cancer Immunol Immunother 66(12):1609–1617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Vargas FA et al (2018) Fc effector function contributes to the activity of human anti-CTLA-4 antibodies. Cancer Cell 33(4):649–663.e4

    Article  CAS  Google Scholar 

  17. Snyder A et al (2014) Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med 371(23):2189–2199

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Prasad V, Kaestner V (2017) Nivolumab and pembrolizumab: monoclonal antibodies against programmed cell death-1 (PD-1) that are interchangeable. In: Seminars in oncology. Elsevier

    Google Scholar 

  19. Zhang J, Wolfgang C, Zheng L (2018) Precision immuno-oncology: prospects of individualized immunotherapy for pancreatic cancer. Cancers 10(2):39

    Article  PubMed Central  CAS  Google Scholar 

  20. Soares KC et al (2015) PD-1/PD-L1 blockade together with vaccine therapy facilitates effector T cell infiltration into pancreatic tumors. J Immunother 38(1):1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Burr ML et al (2017) CMTM6 maintains the expression of PD-L1 and regulates anti-tumour immunity. Nature 549(7670):101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mezzadra R et al (2017) Identification of CMTM6 and CMTM4 as PD-L1 protein regulators. Nature 549(7670):106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Takamori S et al (2018) Differences in PD-L1 expression on tumor and immune cells between lung metastases and corresponding primary tumors. Surg Oncol 27(4):637–641

    Article  PubMed  Google Scholar 

  24. Mansfield A et al (2016) Temporal and spatial discordance of programmed cell death-ligand 1 expression and lymphocyte tumor infiltration between paired primary lesions and brain metastases in lung cancer. Ann Oncol 27(10):1953–1958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Marshall EA et al (2016) Emerging roles of T helper 17 and regulatory T cells in lung cancer progression and metastasis. Mol Cancer 15(1):67

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Luo C, Zhang H (2017) The role of proinflammatory pathways in the pathogenesis of colitis-associated colorectal cancer. Mediat Inflamm 2017:5126048

    Article  CAS  Google Scholar 

  27. Joerger M et al (2016) The IL-17-Th1/Th17 pathway: an attractive target for lung cancer therapy? Expert Opin Ther Targets 20(11):1339–1356

    Article  CAS  PubMed  Google Scholar 

  28. McAllister F et al (2014) Oncogenic Kras activates a hematopoietic-to-epithelial IL-17 signaling axis in preinvasive pancreatic neoplasia. Cancer Cell 25(5):621–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fabre J et al (2016) Targeting the tumor microenvironment: the protumor effects of IL-17 related to cancer type. Int J Mol Sci 17(9)

    Google Scholar 

  30. Yuan J, Zhang F, Niu R (2015) Multiple regulation pathways and pivotal biological functions of STAT3 in cancer. Sci Rep 5:17663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chai EZ et al (2016) Targeting transcription factor STAT3 for cancer prevention and therapy. Pharmacol Ther 162:86–97

    Article  CAS  PubMed  Google Scholar 

  32. Sen M et al (2012) First-in-human trial of a STAT3 decoy oligonucleotide in head and neck tumors: implications for cancer therapy. Cancer Discov 2(8):694–705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ward-Hartstonge KA, Kemp RA (2017) Regulatory T-cell heterogeneity and the cancer immune response. Clin Transl Immunol 6(9):e154

    Article  CAS  Google Scholar 

  34. Tanaka A, Sakaguchi S (2017) Regulatory T cells in cancer immunotherapy. Cell Res 27(1):109–118

    Article  CAS  PubMed  Google Scholar 

  35. Sieow JL, Gun SY, Wong SC (2018) The sweet surrender: how myeloid cell metabolic plasticity shapes the tumor microenvironment. Front Cell Dev Biol 6:168

    Article  PubMed  PubMed Central  Google Scholar 

  36. Bruchard M et al (2013) Chemotherapy-triggered cathepsin B release in myeloid-derived suppressor cells activates the Nlrp3 inflammasome and promotes tumor growth. Nat Med 19(1):57

    Article  CAS  PubMed  Google Scholar 

  37. de Coana YP et al (2017) Ipilimumab treatment decreases monocytic MDSCs and increases CD8 effector memory T cells in long-term survivors with advanced melanoma. Oncotarget 8(13):21539

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ibáñez-Vea M et al (2018) Myeloid-derived suppressor cells in the tumor microenvironment: current knowledge and future perspectives. Arch Immunol Ther Exp 66(2):113–123

    Article  CAS  Google Scholar 

  39. Treffers LW et al (2016) Neutrophils in cancer. Immunol Rev 273(1):312–328

    Article  CAS  PubMed  Google Scholar 

  40. Sica A, Mantovani A (2012) Macrophage plasticity and polarization: in vivo veritas. J Clin Invest 122(3):787–795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tremble LF, Forde PF, Soden DM (2017) Clinical evaluation of macrophages in cancer: role in treatment, modulation and challenges. Cancer Immunol Immunother 66(12):1509–1527

    Article  CAS  PubMed  Google Scholar 

  42. Vesely MD et al (2011) Natural innate and adaptive immunity to cancer. Annu Rev Immunol 29:235–271

    Article  CAS  PubMed  Google Scholar 

  43. Nair S, Dhodapkar MV (2017) Natural killer T cells in cancer immunotherapy. Front Immunol 8:1178

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Böttcher JP et al (2018) NK cells stimulate recruitment of cDC1 into the tumor microenvironment promoting cancer immune control. Cell 172(5):1022–1037.e14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Parekh VV et al (2009) PD-1/PD-L blockade prevents anergy induction and enhances the anti-tumor activities of glycolipid-activated invariant NKT cells. J Immunol 182(5):2816–2826

    Article  CAS  PubMed  Google Scholar 

  46. Koido S et al (2009) Cancer vaccine by fusions of dendritic and cancer cells. Clin Dev Immunol 2009:657369

    Article  PubMed  CAS  Google Scholar 

  47. Kumar C et al (2017) Immune modulation by dendritic-cell-based cancer vaccines. J Biosci 42(1):161–173

    Article  CAS  PubMed  Google Scholar 

  48. Yu P, Fu YX (2006) Tumor-infiltrating T lymphocytes: friends or foes? Lab Investig 86(3):231–245

    Article  CAS  PubMed  Google Scholar 

  49. Restifo NP, Dudley ME, Rosenberg SA (2012) Adoptive immunotherapy for cancer: harnessing the T cell response. Nat Rev Immunol 12(4):269–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wojtowicz ME, Dunn BK, Umar A (2016) Immunologic approaches to cancer prevention-current status, challenges, and future perspectives. Semin Oncol 43(1):161–172

    Article  CAS  PubMed  Google Scholar 

  51. Chu NJ, Armstrong TD, Jaffee EM (2015) Nonviral oncogenic antigens and the inflammatory signals driving early cancer development as targets for cancer immunoprevention. Clin Cancer Res 21(7):1549–1557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lollini PL, De Giovanni C, Nanni P (2013) Preclinical HER-2 Vaccines: from Rodent to Human HER-2. Front Oncol 3:151

    Article  PubMed  PubMed Central  Google Scholar 

  53. Kimura T et al (2013) MUC1 vaccine for individuals with advanced adenoma of the colon: a cancer immunoprevention feasibility study. Cancer Prev Res (Phila) 6(1):18–26

    Article  CAS  Google Scholar 

  54. Castle JC et al (2012) Exploiting the mutanome for tumor vaccination. Cancer Res 72(5):1081–1091

    Article  CAS  PubMed  Google Scholar 

  55. Gubin MM et al (2014) Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature 515(7528):577–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ott PA et al (2017) An immunogenic personal neoantigen vaccine for patients with melanoma. Nature 547(7662):217–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Umar A (2014) Cancer immunoprevention: a new approach to intercept cancer early. Cancer Prev Res 7(11):1067–1071

    Article  CAS  Google Scholar 

  58. Pan J et al (2017) Immunoprevention of KRAS-driven lung adenocarcinoma by a multipeptide vaccine. Oncotarget 8(47):82689–82699

    Article  PubMed  PubMed Central  Google Scholar 

  59. Nasti TH et al (2015) Immunoprevention of chemical carcinogenesis through early recognition of oncogene mutations. J Immunol 194(6):2683–2695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nese Unver .

Editor information

Editors and Affiliations

Ethics declarations

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s)

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Unver, N., Mohindroo, C. (2022). Targets and Strategies for Cancer Immunoprevention. In: McAllister, F. (eds) Cancer Immunoprevention. Methods in Molecular Biology, vol 2435. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2014-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2014-4_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2013-7

  • Online ISBN: 978-1-0716-2014-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics