Skip to main content

Proteomic Profiling of the Tumor Microenvironment

  • Protocol
  • First Online:
Cancer Immunoprevention

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2435))

Abstract

The tumor microenvironment forms a complex pro-tumorigenic milieu constituted by extracellular matrix, surrounding stroma, infiltrating cell populations, and signaling molecules. Proteomic studies have the potential to reveal how individual cell populations within the tumor tissue modulate the microenvironment through protein secretion and consequently alter their protein expression and localization to adapt to this milieu. As a result, proteomic approaches have uncovered how these dynamic components communicate and promote tumor development and progression. The characterization of these mechanisms is relevant for the identification of clinically targetable pathways and for the development of diagnostic tools. Here we describe a method based on the isolation of individual cell compartments and the chromatographic fractionation of intact proteins, followed by enzymatic digestion of individual fractions, and mass-spectrometry analysis, for the profiling of tumor microenvironment cell populations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hanash S, Schliekelman M (2014) Proteomic profiling of the tumor microenvironment: recent insights and the search for biomarkers. Genome Med 6:12

    Article  Google Scholar 

  2. Espina V, Wulfkuhle JD, Calvert VS, VanMeter A, Zhou W, Coukos G, Geho DH, Petricoin EF 3rd, Liotta LA (2006) Laser-capture microdissection. Nat Protoc 1:586–603

    Article  CAS  Google Scholar 

  3. Staunton L, Tonry C, Lis R, Espina V, Liotta L, Inzitari R, Bowden M, Fabre A, O'Leary J, Finn SP, Loda M, Pennington SR (2017) Pathology-driven comprehensive proteomic profiling of the prostate cancer tumor microenvironment. Mol Cancer Res 15:281–293

    Article  CAS  Google Scholar 

  4. Chornoguz O, Grmai L, Sinha P, Artemenko KA, Zubarev RA, Ostrand-Rosenberg S (2011) Proteomic pathway analysis reveals inflammation increases myeloid-derived suppressor cell resistance to apoptosis. Mol Cell Proteomics 10(M110):002980

    PubMed  Google Scholar 

  5. Kobayashi R, Deavers M, Patenia R, Rice-Stitt T, Halbe J, Gallardo S, Freedman RS (2009) 14-3-3 zeta protein secreted by tumor associated monocytes/macrophages from ascites of epithelial ovarian cancer patients. Cancer Immunol Immunother 58:247–258

    Article  CAS  Google Scholar 

  6. Zhuo H, Lyu Z, Su J, He J, Pei Y, Cheng X, Zhou N, Lu X, Zhou S, Zhao Y (2014) Effect of lung squamous cell carcinoma tumor microenvironment on the CD105+ endothelial cell proteome. J Proteome Res 13:4717–4729

    Article  CAS  Google Scholar 

  7. Mesri M, Birse C, Heidbrink J, McKinnon K, Brand E, Bermingham CL, Feild B, Fitzhugh W, He T, Ruben S, Moore PA (2013) Identification and characterization of angiogenesis targets through proteomic profiling of endothelial cells in human cancer tissues. PLoS One 8:e78885

    Article  Google Scholar 

  8. Naba A, Clauser KR, Lamar JM, Carr SA, Hynes RO (2014) Extracellular matrix signatures of human mammary carcinoma identify novel metastasis promoters. eLife 3:e01308

    Article  Google Scholar 

  9. Wang J, Mouradov D, Wang X, Jorissen RN, Chambers MC, Zimmerman LJ, Vasaikar S, Love CG, Li S, Lowes K, Leuchowius KJ, Jousset H, Weinstock J, Yau C, Mariadason J, Shi Z, Ban Y, Chen X, Coffey RJC, Slebos RJC, Burgess AW, Liebler DC, Zhang B, Sieber OM (2017) Colorectal cancer cell line proteomes are representative of primary tumors and predict drug sensitivity. Gastroenterology 153:1082–1095

    Article  Google Scholar 

  10. Drev D, Bileck A, Erdem ZN, Mohr T, Timelthaler G, Beer A, Gerner C, Marian B (2017) Proteomic profiling identifies markers for inflammation-related tumor-fibroblast interaction. Clin Proteomics 14:33

    Article  Google Scholar 

  11. Mitra A, Mishra L, Li S (2013) Technologies for deriving primary tumor cells for use in personalized cancer therapy. Trends Biotechnol 31:347–354

    Article  CAS  Google Scholar 

  12. Francavilla C, Lupia M, Tsafou K, Villa A, Kowalczyk K, Rakownikow Jersie-Christensen R, Bertalot G, Confalonieri S, Brunak S, Jensen LJ, Cavallaro U, Olsen JV (2017) Phosphoproteomics of primary cells reveals Druggable kinase signatures in ovarian cancer. Cell Rep 18:3242–3256

    Article  CAS  Google Scholar 

  13. Webber JP, Spary LK, Mason MD, Tabi Z, Brewis IA, Clayton A (2016) Prostate stromal cell proteomics analysis discriminates normal from tumour reactive stromal phenotypes. Oncotarget 7:20124–20139

    Article  Google Scholar 

  14. Sherman MH, Yu RT, Tseng TW, Sousa CM, Liu S, Truitt ML, He N, Ding N, Liddle C, Atkins AR, Leblanc M, Collisson EA, Asara JM, Kimmelman AC, Downes M, Evans RM (2017) Stromal cues regulate the pancreatic cancer epigenome and metabolome. Proc Natl Acad Sci U S A 114:1129–1134

    Article  CAS  Google Scholar 

  15. Schliekelman MJ, Gibbons DL, Faca VM, Creighton CJ, Rizvi ZH, Zhang Q, Wong CH, Wang H, Ungewiss C, Ahn YH, Shin DH, Kurie JM, Hanash SM (2011) Targets of the tumor suppressor miR-200 in regulation of the epithelial-mesenchymal transition in cancer. Cancer Res 71:7670–7682

    Article  CAS  Google Scholar 

  16. Ong SE, Kratchmarova I, Mann M (2003) Properties of C-13-substituted arginine in stable isotope labeling by amino acids in cell culture (SILAC). J Proteome Res 2:173–181

    Article  CAS  Google Scholar 

  17. Faca VM, Hanash SM (2009) In-depth proteomics to define the cell surface and secretome of ovarian cancer cells and processes of protein shedding. Cancer Res 69:728–730

    Article  CAS  Google Scholar 

  18. Murugesan N, Macdonald JA, Lu Q, Wu SL, Hancock WS, Pachter JS (2011) Analysis of mouse brain microvascular endothelium using laser capture microdissection coupled with proteomics. Methods Mol Biol 686:297–311

    Article  CAS  Google Scholar 

  19. Roulhac PL, Ward JM, Thompson JW, Soderblom EJ, Silva M, Moseley MA 3rd, Jarvis ED (2011) Microproteomics: quantitative proteomic profiling of small numbers of laser-captured cells. Cold Spring Harb Protoc 2011:pdb prot5573

    Article  Google Scholar 

Download references

Acknowledgments

Conflict of Interest: The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir M. Hanash .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s)

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Capello, M., Katayama, H., Hanash, S.M. (2022). Proteomic Profiling of the Tumor Microenvironment. In: McAllister, F. (eds) Cancer Immunoprevention. Methods in Molecular Biology, vol 2435. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2014-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2014-4_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2013-7

  • Online ISBN: 978-1-0716-2014-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics