Skip to main content

Protocol for Screening Endophytic Fungi Against Heavy Metals

  • Protocol
  • First Online:
Mycoremediation Protocols

Part of the book series: Springer Protocols Handbooks ((SPH))

  • 301 Accesses

Abstract

In response to treating heavy metal pollution in contaminated sites, screening of endophytic fungi against heavy metal offers a promising bioremediation approach. It is important to investigate the potential of endophytic fungal communities, to be applied as biosorption materials known as “biosorbents” for the removal of heavy metal ions in aqueous solution. In this chapter, we describe a process of obtaining pure endophytic fungal cultures from plants of interest and screening for their tolerance against heavy metal ions. These procedures are carried out using the conventional agar-plate-based method following standard aseptic techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Guo B, Wang Y, Sun X, Tang K (2008) Bioactive natural products from endophytes: a review. Appl Biochem Microbiol 44:136–142. https://doi.org/10.1134/S0003683808020026

    Article  CAS  Google Scholar 

  2. Jalgaonwala RE, Mohite BV, Mahajan RT (2011) A review: natural products from plant associated endophytic fungi. J Microbiol Biotech Res 1:21–32

    Google Scholar 

  3. Lu H, Zou WX, Meng JC et al (2000) New bioactive metabolites produced by Colletotrichum sp., an endophytic fungus in Artemisia annua. Plant Sci 151:67–73. https://doi.org/10.1016/S0168-9452(99)00199-5

    Article  CAS  Google Scholar 

  4. Rehman S, Shawl AS, Verma V et al (2008) An endophytic Neurospora sp. from Nothapodytes foetida producing camptothecin. Prikl Biokhim Mikrobiol 44:225–231. https://doi.org/10.1134/s0003683808020130

    CAS  PubMed  Google Scholar 

  5. Strobel G, Ford E, Worapong J et al (2002) Isopestacin, an isobenzofuranone from Pestalotiopsis microspora, possessing antifungal and antioxidant activities. Phytochemistry 60:179–183. https://doi.org/10.1016/S0031-9422(02)00062-6

    Article  CAS  Google Scholar 

  6. Strobel G, Daisy B (2003) Bioprospecting for microbial Endophytes and their natural products. Microbiol Mol Biol Rev 67:491–502. https://doi.org/10.1128/mmbr.67.4.491-502.2003

    Article  CAS  Google Scholar 

  7. Wiyakrutta S, Sriubolmas N, Panphut W et al (2004) Endophytic fungi with anti-microbial, anti-cancer and anti-malarial activities isolated from Thai medicinal plants. World J Microbiol Biotechnol 20:265–272. https://doi.org/10.1023/B:WIBI.0000023832.27679.a8

    Article  Google Scholar 

  8. Bapat PM, Kundu S, Wangikar PP (2003) An optimized method for Aspergillus niger spore production on natural carrier substrates. Biotechnol Prog 19:1683–1688. https://doi.org/10.1021/bp0341141

    Article  CAS  Google Scholar 

  9. Gadd GM (1994) Interactions of fungi with toxic metals. In: Powell KA, Renwick A, Peberdy JF (eds) The genus Aspergillus: from taxonomy and genetics to industrial application. Springer US, Boston, pp 361–374

    Chapter  Google Scholar 

  10. Svecova L, Spanelova M, Kubal M, Guibal E (2006) Cadmium, lead and mercury biosorption on waste fungal biomass issued from fermentation industry. I. Equilibrium studies. Sep Purif Technol 52:142–153. https://doi.org/10.1016/j.seppur.2006.03.024

    Article  CAS  Google Scholar 

  11. Wang J, Chen C (2009) Biosorbents for heavy metals removal and their future. Biotechnol Adv 27:195–226. https://doi.org/10.1016/j.biotechadv.2008.11.002

    Article  Google Scholar 

  12. Siddiqui E, Pandey J (2019) Assessment of heavy metal pollution in water and surface sediment and evaluation of ecological risks associated with sediment contamination in the Ganga River: a basin-scale study. Environ Sci Pollut Res 26:10926–10940. https://doi.org/10.1007/s11356-019-04495-6

    Article  CAS  Google Scholar 

  13. Taghinia Hejabi A, Basavarajappa HT, Karbassi AR, Monavari SM (2011) Heavy metal pollution in water and sediments in the Kabini River, Karnataka, India. Environ Monit Assess 182:1–13. https://doi.org/10.1007/s10661-010-1854-0

    Article  Google Scholar 

  14. Ramos L, Fernández MA, González MJ, Hernández LM (1999) Heavy metal pollution in water, sediments, and earthworms from the Ebro River, Spain. Bull Environ Contam Toxicol 63:305–311. https://doi.org/10.1007/s001289900981

    Article  CAS  Google Scholar 

  15. Cheng S (2003) Heavy metal pollution in China: origin, pattern and control. Environ Sci Pollut Res 10:192–198. https://doi.org/10.1065/espr2002.11.141.1

    Article  CAS  Google Scholar 

  16. Gafur NA, Sakakibara M, Sano S, Sera K (2018) A case study of heavy metal pollution in water of Bone river by artisanal small-scale gold mine activities in eastern part of Gorontalo, Indonesia. Water (Switzerland) 10:1–10. https://doi.org/10.3390/w10111507

    Google Scholar 

  17. Begum A, Ramaiah M, Harikrishna et al (2009) Heavy metal pollution and chemical profile of Cauvery river water. J Chem 6:47–52. https://doi.org/10.1155/2009/154610

    CAS  Google Scholar 

  18. Choo J, Sabri NBM, Tan D. et al (2015) Heavy metal resistant endophytic fungi isolated from Nypa fruticans in Kuching Wetland National Park. Ocean Sci J 50:445–453. https://doi.org/10.1007/s12601-015-0040-2

  19. Kjer J, Debbab A, Aly AH, Proksch P (2010) Methods for isolation of marine-derived endophytic fungi and their bioactive secondary products. Nat Protoc 5:479–490. https://doi.org/10.1038/nprot.2009.233

    Article  CAS  Google Scholar 

  20. Guo LD, Hyde KD, Liew ECY (2000) Identification of endophytic fungi from Livistona chinensis based on morphology and rDNA sequences. New Phytol 147:617–630. https://doi.org/10.1046/j.1469-8137.2000.00716.x

    Article  CAS  Google Scholar 

  21. Photita W, Lumyong S, Lumyong P et al (2001) Fungi on Musa acuminata in Hong Kong. Water Resour Manag 14:99–106

    Google Scholar 

  22. Ruriani E, Sunarti TC, Meryandini A (2012) Yeast isolation for bioethanol production. Hayati J Biosci 19:145–149. https://doi.org/10.4308/hjb.19.3.145

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jenny Choo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Choo, J., Wong, C., Müller, M. (2022). Protocol for Screening Endophytic Fungi Against Heavy Metals. In: Udayanga, D., Bhatt, P., Manamgoda, D., Saez, J.M. (eds) Mycoremediation Protocols. Springer Protocols Handbooks. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2006-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2006-9_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2005-2

  • Online ISBN: 978-1-0716-2006-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics