Skip to main content

Enzyme Biosensors for the Detection of Environmental Contaminants

  • Protocol
  • First Online:
Mycoremediation Protocols

Abstract

Today, water body pollution is one of the world’s biggest environmental problems. In this sense, there is a high demand for the design and potential development of new devices for the detection and quantification of pollutants present in the environment. Biosensors are ideal for detecting and measuring environmental pollution reliably, specifically, and sensitively. Among them, electrochemical enzyme biosensors have many advantages such as their high selectivity and sensitivity to the target substrate, which is presented as an opportunity to significantly improve the diagnosis and monitoring of environmental pollutants. The protocol presented in this chapter consists of a technique for monitoring contaminants in surface waters using the enzyme laccase of fungal origin in the formation of an enzyme biosensor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Claude D, Houssemeddine G, Andriy B, Jean-Marc C (2007) Whole-cell algal biosensors for urban waters monitoring. Ther Nova 7:1507–1514

    Google Scholar 

  2. Nigam VK, Shukla P (2015) Enzyme-based biosensors for detection of environmental pollutants-a review. J Microbiol Biotechnol 25(11):1773–1781

    Article  CAS  Google Scholar 

  3. Colborn T, Myers JP, Dumanoski D (1997) Nuestro futuro robado. Ecoespaña, Madrid

    Google Scholar 

  4. Songa EA, Arotiba OA, Owino JH, Jahed N, Baker PG, Iwuoha EI (2009) Electrochemical detection of glyphosate herbicide using horseradish peroxidase immobilized on sulfonated polymer matrix. Bioelectrochemistry 75(2):117–123

    Article  CAS  Google Scholar 

  5. Vorčáková K, Štěpánková Š, Sedlák M, Vytřas K (2015) Electrochemical sensors for the estimation of the inhibitory effect of phenylcarbamates to cholinesterase. Chemosensors 3(4):274–283

    Article  Google Scholar 

  6. Wang X, Yao MQ, Liu L, Cao Y, Bao J (2016) Degradation of chlorpyrifos in contaminated soil by immobilized laccase. J Serb Chem Soc 81(10):1215–1224

    Article  Google Scholar 

  7. Liu T, Su H, Qu X, Ju P, Cui L, Ai S (2011) Acetylcholinesterase biosensor based on 3-carboxyphenylboronic acid/reduced graphene oxide–gold nanocomposites modified electrode for amperometric detection of organophosphorus and carbamate pesticides. Sens Actuators B Chem 160(1):1255–1261

    Article  CAS  Google Scholar 

  8. Songa EA, Okonkwo JO (2016) Recent approaches to improving selectivity and sensitivity of enzyme-based biosensors for organophosphorus pesticides: a review. Talanta 155:289–304

    Article  CAS  Google Scholar 

  9. Cosnier S (2003) Biosensors based on electropolymerized films: new trends. Anal Bioanal Chem 377(3):507–520

    Article  CAS  Google Scholar 

  10. Riu J, Maroto A, Rius FX (2006) Nanosensors in environmental analysis. Talanta 69(2):288–301

    Article  CAS  Google Scholar 

  11. Thurston CF (1994) The structure and function of fungal laccases. Microbiology 140(1):19–26

    Article  CAS  Google Scholar 

  12. Gianfreda L, Xu F, Bollag JM (1999) Laccases: a useful group of oxidoreductive enzymes. Biorem J 3(1):1–26

    Article  CAS  Google Scholar 

  13. Diamantidis G, Effosse A, Potier P, Bally R (2000) Purification and characterization of the first bacterial laccase in the rhizospheric bacterium Azospirillum lipoferum. Soil Biol Biochem 32(7):919–927

    Article  CAS  Google Scholar 

  14. Dean JF, Eriksson KEL (1994) Laccase and the deposition of lignin in vascular plants. Holzforschung 48:21–33

    Article  CAS  Google Scholar 

  15. Bajaj M, Gallert C, Winter J (2008) Biodegradation of high phenol containing synthetic wastewater by an aerobic fixed bed reactor. Bioresour Technol 99(17):8376–8381

    Article  CAS  Google Scholar 

  16. Bhakta SA, Evans E, Benavidez TE, Garcia CD (2015) Protein adsorption onto nanomaterials for the development of biosensors and analytical devices: a review. Anal Chim Acta 872:7–25

    Article  CAS  Google Scholar 

  17. Kudanga T, Nyanhongo GS, Guebitz GM, Burton S (2011) Potential applications of laccase-mediated coupling and grafting reactions: a review. Enzym Microb Technol 48(3):195–208

    Article  CAS  Google Scholar 

  18. Montereali MR, Della Seta L, Vastarella W, Pilloton R (2010) A disposable Laccase–Tyrosinase based biosensor for amperometric detection of phenolic compounds in must and wine. J Mol Catal B Enzym 64(3–4):189–194

    Article  CAS  Google Scholar 

  19. Nazari M, Kashanian S, Rafipour R (2015) Laccase immobilization on the electrode surface to design a biosensor for the detection of phenolic compounds such as catechol. Spectrochim Acta A Mol Biomol Spectrosc 145:130–138

    Article  CAS  Google Scholar 

  20. Portaccio M, Di Tuoro D, Arduini F, Moscone D, Cammarota M, Mita DG, Lepore M (2013) Laccase biosensor based on screen-printed electrode modified with thionine–carbon black nanocomposite, for Bisphenol A detection. Electrochim Acta 109:340–347

    Article  CAS  Google Scholar 

  21. Freire RS, Duran N, Wang J, Kubota LT (2002) Laccase-based screen-printed electrode for amperometric detection of phenolic compounds. Anal Lett 35(1):29–38

    Article  CAS  Google Scholar 

  22. ElKaoutit M, Naranjo-Rodriguez I, Temsamani KR, Hernández-Artiga MP, Bellido-Milla D, de Cisneros JL (2008) A comparison of three-amperometric phenoloxidase–Sonogel–Carbon based biosensors for determination of polyphenols in beers. Food Chem 110(4):1019–1024

    Article  CAS  Google Scholar 

  23. Di Fusco M, Tortolini C, Deriu D, Mazzei F (2010) Laccase-based biosensor for the determination of polyphenol index in wine. Talanta 81(1–2):235–240

    Article  Google Scholar 

  24. Fonseca MI, Shimizu E, Zapata PD, Villalba LL (2010) Copper inducing effect on laccase production of white rot fungi native from Misiones (Argentina). Enzym Microb Technol 46(6):534–539

    Article  CAS  Google Scholar 

  25. Sabela MI, Gumede NJ, Singh P, Bisetty K (2012) Evaluation of antioxidants in herbal tea with a Laccase biosensor. Int J Electrochem Sci 7(6):4918–4928

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Schimpf, A.R.A., Rodríguez, D., Fonseca, M.I., Zapata, P.D. (2022). Enzyme Biosensors for the Detection of Environmental Contaminants. In: Udayanga, D., Bhatt, P., Manamgoda, D., Saez, J.M. (eds) Mycoremediation Protocols. Springer Protocols Handbooks. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2006-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2006-9_21

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2005-2

  • Online ISBN: 978-1-0716-2006-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics