Skip to main content

In Vitro Reconstitution Platforms of Mammalian Cell-Free Expressed Membrane Proteins

  • Protocol
  • First Online:
Cell-Free Gene Expression

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2433))

Abstract

Membrane proteins are essential components in cell membranes and enable cells to communicate with their outside environment and to carry out intracellular signaling. Functional reconstitution of complex membrane proteins using cell-free expression (CFE) systems has been proved to be challenging mainly due to the lack of necessary machinery for proper folding and translocation of nascent membrane proteins and their delivery to the supplied synthetic bilayers. Here, we provide protocols for detergent-free, cell-free reconstitution of functional membrane proteins using HeLa-based CFE system and outline assays for studying their membrane insertion, topology, and their orientation upon incorporation into the supported lipid bilayers or bilayers of giant unilamellar vesicles as well as methods to isolate functional translocated cell-free produced membrane proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Laohakunakorn N, Grasemann L, Lavickova B et al (2020) Bottom-up construction of complex biomolecular systems with cell-free synthetic biology. https://pubmed.ncbi.nlm.nih.gov/32266240/

  2. Wingfield PT (2015) Overview of the purification of recombinant proteins. Curr Protoc Protein Sci 2015:6.1.1–6.1.35

    Google Scholar 

  3. Mancia F, Love J (2010) High-throughput expression and purification of membrane proteins. J Struct Biol 172:85–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Knol J, Sjollema K, Poolman B (1998) Detergent-mediated reconstitution of membrane proteins. Biochemistry 37:16410–16415

    Article  CAS  PubMed  Google Scholar 

  5. Rigaud J-LL, Lévy D (2003) Reconstitution of membrane proteins into liposomes. Methods Enzymol 372:65–86

    Article  CAS  PubMed  Google Scholar 

  6. Noireaux V, Liu AP (2020) The new age of cell-free biology. Annu Rev Biomed Eng 22:51–77

    Article  CAS  PubMed  Google Scholar 

  7. Chong S (2014) Overview of cell-free protein synthesis: historic landmarks, commercial systems, and expanding applications. Curr Protoc Mol Biol 2014:16.30.1–16.30.11

    Google Scholar 

  8. Lu Y (2017) Cell-free synthetic biology: engineering in an open world. Synth Syst Biotechnol 2(1):23–27

    Article  PubMed  PubMed Central  Google Scholar 

  9. Perez JG, Stark JC, Jewett MC (2016) Cell-free synthetic biology: engineering beyond the cell. Cold Spring Harb Perspect Biol 8:a023853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Khambhati K, Bhattacharjee G, Gohil N et al (2019) Exploring the potential of cell-free protein synthesis for extending the abilities of biological systems. https://pubmed.ncbi.nlm.nih.gov/31681738/

  11. Zemella A, Thoring L, Hoffmeister C et al (2015) Cell-free protein synthesis: pros and cons of prokaryotic and eukaryotic systems. Chembiochem 16:2420–2431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gregorio NE, Levine MZ, Oza JP (2019) A user’s guide to cell-free protein synthesis. https://pubmed.ncbi.nlm.nih.gov/31164605/

  13. Dondapati SK, Kreir M, Quast RB et al (2014) Membrane assembly of the functional KcsA potassium channel in a vesicle-based eukaryotic cell-free translation system. Biosens Bioelectron 59:174–183

    Article  CAS  PubMed  Google Scholar 

  14. Komiya M, Kato M, Tadaki D et al (2020) Advances in artificial cell membrane systems as a platform for reconstituting ion channels. https://pubmed.ncbi.nlm.nih.gov/31944562/

  15. Demarche S, Sugihara K, Zambelli T et al (2011) Techniques for recording reconstituted ion channels. Analyst 136:1077–1089

    Article  CAS  PubMed  Google Scholar 

  16. Bashirzadeh Y, Liu AP (2019) Encapsulation of the cytoskeleton: towards mimicking the mechanics of a cell. Soft Matter 15:8425–8436

    Article  CAS  PubMed  Google Scholar 

  17. Bashirzadeh Y, Wubshet NH, Liu AP (2020) Confinement geometry tunes fascin-actin bundle structures and consequently the shape of a lipid bilayer vesicle. Front Mol Biosci 7:610277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bashirzadeh Y, Redford SA, Lorpaiboon C, et al (2021) Actin crosslinker competition and sorting drive emergent GUV size-dependent actin network architecture. Commun Biol 41(4):1–11

    Google Scholar 

  19. Groaz A, Moghimianavval H, Tavella F et al (2020) Engineering spatiotemporal organization and dynamics in synthetic cells. https://pubmed.ncbi.nlm.nih.gov/33219745/

  20. Majumder S, Garamella J, Wang YL et al (2017) Cell-sized mechanosensitive and biosensing compartment programmed with DNA. Chem Commun 53:7349–7352

    Article  CAS  Google Scholar 

  21. Majumder S, Willey PT, DeNies MS et al (2019) A synthetic biology platform for the reconstitution and mechanistic dissection of LINC complex assembly. J Cell Sci 132:234153

    Article  Google Scholar 

  22. Neumann S, Pucadyil TJ, Schmid SL (2013) Analyzing membrane remodeling and fission using supported bilayers with excess membrane reservoir. Nat Protoc 8:213–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mikami S, Kobayashi T, Imataka H (2010) Cell-free protein synthesis systems with extracts from cultured human cells. Methods Mol Biol 607:43–52

    Article  CAS  PubMed  Google Scholar 

  24. Abkarian M, Loiseau E, Massiera G (2011) Continuous droplet interface crossing encapsulation (cDICE) for high throughput monodisperse vesicle design. Soft Matter 7:4610–4614

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allen P. Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Moghimianavval, H., Hsu, YY., Groaz, A., Liu, A.P. (2022). In Vitro Reconstitution Platforms of Mammalian Cell-Free Expressed Membrane Proteins. In: Karim, A.S., Jewett, M.C. (eds) Cell-Free Gene Expression. Methods in Molecular Biology, vol 2433. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1998-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1998-8_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1997-1

  • Online ISBN: 978-1-0716-1998-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics