Skip to main content

Mitochondrial DNA Transport in Drosophila Neurons

  • Protocol
  • First Online:
Axonal Transport

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2431))

Abstract

Mitochondria are essential organelles that generate energy and play vital roles in cellular metabolism. The small circular mitochondrial genome encodes key components of the mitochondrial respiratory apparatus. Depletion of, or mutations in mitochondrial DNA (mtDNA) cause mitochondrial dysfunction and disease. mtDNA is packaged into nucleoids, which are transported throughout the cell within mitochondria. Efficient transport of nucleoids is essential in neurons, where mitochondrial function is required locally at synapses. Here I describe methods for visualization of nucleoids in Drosophila neurons using a GFP fusion of the mitochondrial transcription factor TFAM. TFAM-GFP, together with mCherry-labeled mitochondria, was used to visualize nucleoids in fixed larval segmental nerves. I also describe how these tools can be used for live imaging of nucleoid dynamics. Using Drosophila as a model system, these methods will enable further characterization and analysis of nucleoid dynamics in neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Spinelli JB, Haigis MC (2018) The multifaceted contributions of mitochondria to cellular metabolism. Nat Cell Biol 20(7):745–754. https://doi.org/10.1038/s41556-018-0124-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Devine MJ, Kittler JT (2018) Mitochondria at the neuronal presynapse in health and disease. Nat Rev Neurosci 19(2):63–80. https://doi.org/10.1038/nrn.2017.170

    Article  CAS  PubMed  Google Scholar 

  3. Granat L, Hunt RJ, Bateman JM (2020) Mitochondrial retrograde signalling in neurological disease. Philos Trans R Soc Lond Ser B Biol Sci 375(1801):20190415. https://doi.org/10.1098/rstb.2019.0415

    Article  CAS  Google Scholar 

  4. Khacho M, Harris R, Slack RS (2019) Mitochondria as central regulators of neural stem cell fate and cognitive function. Nat Rev Neurosci 20(1):34–48. https://doi.org/10.1038/s41583-018-0091-3

    Article  CAS  PubMed  Google Scholar 

  5. Hunt RJ, Granat L, McElroy GS, Ranganathan R, Chandel NS, Bateman JM (2019) Mitochondrial stress causes neuronal dysfunction via an ATF4-dependent increase in L-2-hydroxyglutarate. J Cell Biol 218(12):4007–4016. https://doi.org/10.1083/jcb.201904148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Duncan OF, Granat L, Ranganathan R, Singh VK, Mazaud D, Fanto M, Chambers D, Ballard CG, Bateman JM (2018) Ras-ERK-ETS inhibition alleviates neuronal mitochondrial dysfunction by reprogramming mitochondrial retrograde signaling. PLoS Genet 14(7):e1007567. https://doi.org/10.1371/journal.pgen.1007567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nunnari J, Suomalainen A (2012) Mitochondria: in sickness and in health. Cell 148(6):1145–1159. https://doi.org/10.1016/j.cell.2012.02.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Duncan OF, Bateman JM (2016) Mitochondrial retrograde signaling in the Drosophila nervous system and beyond. Fly (Austin) 10:1–6. https://doi.org/10.1080/19336934.2016.1174353

    Article  Google Scholar 

  9. St John JC (2016) Mitochondrial DNA copy number and replication in reprogramming and differentiation. Semin Cell Dev Biol 52:93–101. https://doi.org/10.1016/j.semcdb.2016.01.028

    Article  CAS  PubMed  Google Scholar 

  10. Kang I, Chu CT, Kaufman BA (2018) The mitochondrial transcription factor TFAM in neurodegeneration: emerging evidence and mechanisms. FEBS Lett 592(5):793–811. https://doi.org/10.1002/1873-3468.12989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cagin U, Duncan OF, Gatt AP, Dionne MS, Sweeney ST, Bateman JM (2015) Mitochondrial retrograde signaling regulates neuronal function. Proc Natl Acad Sci U S A 112(44):E6000–E6009. https://doi.org/10.1073/pnas.1505036112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kukat C, Davies KM, Wurm CA, Spahr H, Bonekamp NA, Kuhl I, Joos F, Polosa PL, Park CB, Posse V, Falkenberg M, Jakobs S, Kuhlbrandt W, Larsson NG (2015) Cross-strand binding of TFAM to a single mtDNA molecule forms the mitochondrial nucleoid. Proc Natl Acad Sci U S A 112(36):11288–11293. https://doi.org/10.1073/pnas.1512131112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kukat C, Wurm CA, Spahr H, Falkenberg M, Larsson NG, Jakobs S (2011) Super-resolution microscopy reveals that mammalian mitochondrial nucleoids have a uniform size and frequently contain a single copy of mtDNA. Proc Natl Acad Sci U S A 108(33):13534–13539. https://doi.org/10.1073/pnas.1109263108

    Article  PubMed  PubMed Central  Google Scholar 

  14. Falkenberg M, Larsson NG, Gustafsson CM (2007) DNA replication and transcription in mammalian mitochondria. Annu Rev Biochem 76:679–699. https://doi.org/10.1146/annurev.biochem.76.060305.152028

    Article  CAS  PubMed  Google Scholar 

  15. Brown TA, Tkachuk AN, Shtengel G, Kopek BG, Bogenhagen DF, Hess HF, Clayton DA (2011) Superresolution fluorescence imaging of mitochondrial nucleoids reveals their spatial range, limits, and membrane interaction. Mol Cell Biol 31(24):4994–5010. https://doi.org/10.1128/mcb.05694-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lewis SC, Uchiyama LF, Nunnari J (2016) ER-mitochondria contacts couple mtDNA synthesis with mitochondrial division in human cells. Science 353(6296):aaf5549. https://doi.org/10.1126/science.aaf5549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Van Laar VS, Arnold B, Howlett EH, Calderon MJ, St Croix CM, Greenamyre JT, Sanders LH, Berman SB (2018) Evidence for compartmentalized axonal mitochondrial biogenesis: mitochondrial DNA replication increases in distal axons as an early response to Parkinson’s disease-relevant stress. J Neurosci 38(34):7505–7515. https://doi.org/10.1523/jneurosci.0541-18.2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bellen HJ, Tong C, Tsuda H 100 years of Drosophila research and its impact on vertebrate neuroscience: a history lesson for the future. Nat Rev Neurosci 11(7):514–522. https://doi.org/10.1038/nrn2839

  19. Zhang Y, Chen Y, Gucek M, Xu H (2016) The mitochondrial outer membrane protein MDI promotes local protein synthesis and mtDNA replication. Embo J 35(10):1045–1057. https://doi.org/10.15252/embj.201592994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen Z, Wang ZH, Zhang G, Bleck CKE, Chung DJ, Madison GP, Lindberg E, Combs C, Balaban RS, Xu H (2020) Mitochondrial DNA segregation and replication restrict the transmission of detrimental mutation. J Cell Biol 219(7):e201905160. https://doi.org/10.1083/jcb.201905160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pfeiffer BD, Ngo TT, Hibbard KL, Murphy C, Jenett A, Truman JW, Rubin GM (2010) Refinement of tools for targeted gene expression in Drosophila. Genetics 186(2):735–755. https://doi.org/10.1534/genetics.110.119917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Work in this area in my laboratory is currently funded by grants from Alzheimer’s research UK (ARUK-IRG2017A-2), the NC3Rs (NC/V001884/1), and the MRC (MR/V013130/1). I thank the Wohl Cellular Imaging Centre at King’s College London for help with light microscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph M. Bateman .

Editor information

Editors and Affiliations

1 Electronics Supplementary Materials

Movie 1

Movie of stills shown in Fig. 2. (AVI 12734 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bateman, J.M. (2022). Mitochondrial DNA Transport in Drosophila Neurons. In: Vagnoni, A. (eds) Axonal Transport. Methods in Molecular Biology, vol 2431. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1990-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1990-2_21

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1989-6

  • Online ISBN: 978-1-0716-1990-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics