Skip to main content

Challenges and Recent Advances of Novel Chemical Inhibitors in Medulloblastoma Therapy

  • Protocol
  • First Online:
Medulloblastoma

Abstract

Medulloblastoma is a common term used for the juvenile malignant brain tumor, and its treatment is exciting due to different genetic origins, improper transportation of drug across the blood-brain barrier, and chemo-resistance with various side effects. Currently, medulloblastoma divided into four significant subsections (Wnt, Shh, Group 3, and Group 4) is based on their hereditary modulation and histopathological advancement. In this chapter, we tried to combine several novel chemical therapeutic agents active toward medulloblastoma therapy. All these compounds have potent activity to inhibit the medulloblastoma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BBB:

Blood-brain barrier

CNS:

Central nervous system

DNA:

Deoxyribonucleic acid

MB:

Medulloblastoma

NB:

Neuroblastoma

NP:

Nanoparticles

NPCs:

Nestin cerebellar neuron precursor cells

PNET:

Primitive neuroectodermal tumor

Prch1:

Patched1

Shh:

Sonic hedgehog-activated

SMO:

Smoothened protein

VLDL:

Very low-density lipoprotein

Wnt:

Wingless-activated

References

  1. Yao M, Ventura PB, Jiang Y, Rodriguez FJ, Wang L, Perry JS, Yang Y, Wahl K, Crittenden RB, Bennett ML, Qi L (2020) Astrocytic trans-differentiation completes a multicellular paracrine feedback loop required for medulloblastoma tumor growth. Cell 180(3):502–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wang Q, Kumar V, Lin F, Sethi B, Coulter DW, McGuire TR, Mahato RI (2020) ApoE mimetic peptide targeted nanoparticles carrying a BRD4 inhibitor for treating Medulloblastoma in mice. J Control Release 323(10):463–474

    Article  CAS  PubMed  Google Scholar 

  3. De Braganca KC, Packer RJ (2013) Treatment options for medulloblastoma and CNS primitive neuroectodermal tumor (PNET). Curr Treat Options Neurol 15(5):593–606

    Article  PubMed  PubMed Central  Google Scholar 

  4. Zhang L, He X, Liu X, Zhang F, Huang LF, Potter AS, Xu L, Zhou W, Zheng T, Luo Z, Berry KP (2019) Single-cell transcriptomics in medulloblastoma reveals tumor-initiating progenitors and oncogenic cascades during tumorigenesis and relapse. Cancer Cell 36(3):302–318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kumar V, Kumar V, McGuire T, Coulter DW, Sharp JG, Mahato RI (2017) Challenges and recent advances in medulloblastoma therapy. Trends Pharmacol Sci 38(12):1061–1084

    Article  CAS  PubMed  Google Scholar 

  6. Cheng Y, Liao S, Xu G, Hu J, Guo D, Du F, Contreras A, Cai KQ, Peri S, Wang Y, Corney DC (2020) NeuroD1 dictates tumor cell differentiation in medulloblastoma. Cell Rep 31(12):107782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liu X, Zhang Y, Li Y, Wang J, Ding H, Huang W, Ding C, Liu H, Tan W, Zhang A (2020) Development of hedgehog pathway inhibitors by epigenetically targeting GLI through BET bromodomain for the treatment of medulloblastoma. Acta Pharm Sin B 11(2):488–504

    Article  PubMed  PubMed Central  Google Scholar 

  8. Liu X, Ding C, Tan W, Zhang A (2020) Medulloblastoma: molecular understanding, treatment evolution, and new developments. Pharmacol Ther 210:107516

    Article  CAS  PubMed  Google Scholar 

  9. Smee RI, Williams JR, De-loyde KJ, Meagher NS, Cohn R (2012) Medulloblastoma: progress over time. J Med Imaging Radiat Oncol 56(2):227–234

    Article  PubMed  Google Scholar 

  10. Northcott PA, Buchhalter I, Morrissy AS, Hovestadt V, Weischenfeldt J, Ehrenberger T, Gröbner S, Segura-Wang M, Zichner T, Rudneva VA, Warnatz HJ (2017) The whole-genome landscape of medulloblastoma subtypes. Nature 547(7663):311–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Northcott PA, Shih DJ, Peacock J, Garzia L, Morrissy AS, Zichner T, Stütz AM, Korshunov A, Reimand J, Schumacher SE, Beroukhim R (2012) Subgroup-specific structural variation across 1,000 medulloblastoma genomes. Nature 488(7409):49–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rudin CM, Hann CL, Laterra J, Yauch RL, Callahan CA, Fu L, Holcomb T, Stinson J, Gould SE, Coleman B, LoRusso PM (2009) Treatment of medulloblastoma with hedgehog pathway inhibitor GDC-0449. N Engl J Med 361(12):1173–1178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kenney AM, Rowitch DH (2000) Sonic hedgehog promotes G1 cyclin expression and sustained cell cycle progression in mammalian neuronal precursors. Mol Cell Biol 20(23):9055–9067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Phoenix TN, Patmore DM, Boop S, Boulos N, Jacus MO, Patel YT, Roussel MF, Finkelstein D, Goumnerova L, Perreault S, Wadhwa E (2016) Medulloblastoma genotype dictates blood brain barrier phenotype. Cancer Cell 29(4):508–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cavalli FM, Remke M, Rampasek L, Peacock J, Shih DJ, Luu B, Garzia L, Torchia J, Nor C, Morrissy AS, Agnihotri S (2017) Intertumoral heterogeneity within medulloblastoma subgroups. Cancer Cell 31(6):737–754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Taylor MD, Northcott PA, Korshunov A, Remke M, Cho YJ, Clifford SC, Eberhart CG, Parsons DW, Rutkowski S, Gajjar A, Ellison DW (2012) Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathol 123(4):465–472

    Article  CAS  PubMed  Google Scholar 

  17. Rahmann EP, Gilbertson RJ (2018) Multiomic Medulloblastomas. Cancer Cell 34(3):351–353

    Article  CAS  PubMed  Google Scholar 

  18. Robinson G, Parker M, Kranenburg TA, Lu C, Chen X, Ding L, Phoenix TN, Hedlund E, Wei L, Zhu X, Chalhoub N (2012) Novel mutations target distinct subgroups of medulloblastoma. Nature 488(7409):43–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Patmore DM, Jassim A, Nathan E, Gilbertson RJ, Tahan D, Hoffmann N, Tong Y, Smith KS, Kanneganti TD, Suzuki H, Taylor MD (2020) DDX3X suppresses the susceptibility of hindbrain lineages to medulloblastoma. Dev Cell 54(4):455–470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Garancher A, Lin CY, Morabito M, Richer W, Rocques N, Larcher M, Bihannic L, Smith K, Miquel C, Leboucher S, Herath NI (2018) NRL and CRX define photoreceptor identity and reveal subgroup-specific dependencies in medulloblastoma. Cancer Cell 33(3):435–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gilbertson RJ, Ellison DW (2008) The origins of medulloblastoma subtypes. Annu Rev Pathol Mech Dis 3:341–365

    Article  CAS  Google Scholar 

  22. Gajjar A, Chintagumpala M, Ashley D, Kellie S, Kun LE, Merchant TE, Woo S, Wheeler G, Ahern V, Krasin MJ, Fouladi M (2006) Risk-adapted craniospinal radiotherapy followed by high-dose chemotherapy and stem-cell rescue in children with newly diagnosed medulloblastoma (St Jude Medulloblastoma-96): long-term results from a prospective, multicentre trial. Lancet Oncol 7(10):813–820

    Article  PubMed  Google Scholar 

  23. Thompson MC, Fuller C, Hogg TL, Dalton J, Finkelstein D, Lau CC, Chintagumpala M, Adesina A, Ashley DM, Kellie SJ, Taylor MD (2006) Genomics identifies medulloblastoma subgroups that are enriched for specific genetic alterations. J Clin Oncol 24(12):1924–1931

    Article  CAS  PubMed  Google Scholar 

  24. Gibson P, Tong Y, Robinson G, Thompson MC, Currle DS, Eden C, Kranenburg TA, Hogg T, Poppleton H, Martin J, Finkelstein D (2010) Subtypes of medulloblastoma have distinct developmental origins. Nature 468(7327):1095–1099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ellison DW, Onilude OE, Lindsey JC, Lusher ME, Weston CL, Taylor RE, Pearson AD, Clifford SC (2005) β-Catenin status predicts a favorable outcome in childhood medulloblastoma: the United Kingdom Children's Cancer Study Group Brain Tumour Committee. J Clin Oncol 23(31):7951–7957

    Article  CAS  PubMed  Google Scholar 

  26. Tjandra KC, McCarthy N, Yang L, Laos AJ, Sharbeen G, Phillips PA, Forgham H, Sagnella SM, Whan RM, Kavallaris M, Thordarson P (2020) Identification of novel Medulloblastoma cell-targeting peptides for use in selective chemotherapy drug delivery. J Med Chem 63(5):2181–2193

    Article  CAS  PubMed  Google Scholar 

  27. Nagy A, Armatis P, Schally AV (1996) High yield conversion of doxorubicin to 2-pyrrolinodoxorubicin, an analog 500-1000 times more potent: structure-activity relationship of daunosamine-modified derivatives of doxorubicin. Proc Natl Acad Sci U S A 93(6):2464–2469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Braun S, Oppermann H, Mueller A, Renner C, Hovhannisyan A, Baran-Schmidt R, Gebhardt R, Hipkiss A, Thiery J, Meixensberger J, Gaunitz F (2012) Hedgehog signaling in glioblastoma multiforme. Cancer Biol Ther 13(7):487–495

    Article  CAS  PubMed  Google Scholar 

  29. Wickström M, Dyberg C, Shimokawa T, Milosevic J, Baryawno N, Fuskevåg OM, Larsson R, Kogner P, Zaphiropoulos PG, Johnsen JI (2013) Targeting the hedgehog signal transduction pathway at the level of GLI inhibits neuroblastoma cell growth in vitro and in vivo. Int J Cancer 132(7):1516–1524

    Article  PubMed  Google Scholar 

  30. Kool M, Jones DT, Jäger N, Northcott PA, Pugh TJ, Hovestadt V, Piro RM, Esparza LA, Markant SL, Remke M, Milde T (2014) Genome sequencing of SHH medulloblastoma predicts genotype-related response to smoothened inhibition. Cancer Cell 25(3):393–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liu Z, Lv H, Li H, Zhang Y, Zhang H, Su F, Xu S, Li Y, Si Y, Yu S, Chen X (2011) Interaction studies of an anticancer alkaloid,(+)-(13aS)-deoxytylophorinine, with calf thymus DNA and four repeated double-helical DNAs. Chemotherapy 57(4):310–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lv H, Ren J, Ma S, Xu S, Qu J, Liu Z, Zhou Q, Chen X, Yu S (2012) Synthesis, biological evaluation and mechanism studies of deoxytylophorinine and its derivatives as potential anticancer agents. PLoS One 7(1):e30342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Li C, Li Y, Lv H, Li S, Tang K, Zhou W, Yu S, Chen X (2015) The novel anti-neuroblastoma agent PF403, inhibits proliferation and invasion in vitro and in brain xenografts. Int J Oncol 47(1):179–187

    Article  CAS  PubMed  Google Scholar 

  34. Chen J, Lv H, Hu J, Ji M, Xue N, Li C, Ma S, Zhou Q, Lin B, Li Y, Yu S (2016) CAT3, a novel agent for medulloblastoma and glioblastoma treatment, inhibits tumor growth by disrupting the hedgehog signaling pathway. Cancer Lett 381(2):391–403

    Article  CAS  PubMed  Google Scholar 

  35. Yu W, Xiao H, Lin J, Li C (2013) Discovery of novel STAT3 small molecule inhibitors via in silico site-directed fragment-based drug design. J Med Chem 56(11):4402–4412

    Article  CAS  PubMed  Google Scholar 

  36. Xiao H, Bid HK, Jou D, Wu X, Yu W, Li C, Houghton PJ, Lin J (2015) A novel small molecular STAT3 inhibitor, LY5, inhibits cell viability, cell migration, and angiogenesis in medulloblastoma cells. J Biol Chem 290(6):3418–3429

    Article  CAS  PubMed  Google Scholar 

  37. Maeda H (2017) Polymer therapeutics and the EPR effect. J Drug Target 25(9–10):781–785

    Article  CAS  PubMed  Google Scholar 

  38. Liu G, Xue D, Yang J, Wang J, Liu X, Huang W, Li J, Long YQ, Tan W, Zhang A (2016) Design, synthesis, and pharmacological evaluation of 2-(2, 5-dimethyl-5, 6, 7, 8-tetrahydroquinolin-8-yl)-N-aryl propanamides as novel smoothened (Smo) antagonists. J Med Chem 59(24):11050–11068

    Article  CAS  PubMed  Google Scholar 

  39. Rimkus TK, Carpenter RL, Qasem S, Chan M, Lo HW (2016) Targeting the sonic hedgehog signaling pathway: review of smoothened and GLI inhibitors. Cancers 8(2):22

    Article  PubMed Central  Google Scholar 

  40. Xin M, Ji X, De La Cruz LK, Thareja S, Wang B (2018) Strategies to target the hedgehog signaling pathway for cancer therapy. Med Res Rev 38(3):870–913

    Article  PubMed  Google Scholar 

  41. Ishii T, Shimizu Y, Nakashima K, Kondo S, Ogawa K, Sasaki S, Matsui H (2014) Inhibition mechanism exploration of investigational drug TAK-441 as inhibitor against Vismodegib-resistant smoothened mutant. Eur J Pharmacol 723:305–313

    Article  CAS  PubMed  Google Scholar 

  42. Ohashi T, Oguro Y, Tanaka T, Shiokawa Z, Tanaka Y, Shibata S, Sato Y, Yamakawa H, Hattori H, Yamamoto Y, Kondo S (2012) Discovery of the investigational drug TAK-441, a pyrrolo [3,2-c] pyridine derivative, as a highly potent and orally active hedgehog signaling inhibitor: modification of the core skeleton for improved solubility. Bioorg Med Chem 20(18):5507–5517

    Article  CAS  PubMed  Google Scholar 

  43. Peukert S, He F, Dai M, Zhang R, Sun Y, Miller-Moslin K, McEwan M, Lagu B, Wang K, Yusuff N, Bourret A (2013) Discovery of NVP-LEQ506, a second-generation inhibitor of smoothened. ChemMedChem 8(8):1261–1265

    Article  CAS  PubMed  Google Scholar 

  44. Huang P, Nedelcu D, Watanabe M, , Jao C, Kim Y, Liu J, Salic A (2016) Cellular cholesterol directly activates smoothened in hedgehog signaling. Cell 166(5):1176–1187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Byrne EF, Sircar R, Miller PS, Hedger G, Luchetti G, Nachtergaele S, Tully MD, Mydock-McGrane L, Covey DF, Rambo RP, Sansom MS (2016) Structural basis of smoothened regulation by its extracellular domains. Nature 535(7613):517–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang C, Wu H, Evron T, Vardy E, Han GW, Huang XP, Hufeisen SJ, Mangano TJ, Urban DJ, Katritch V, Cherezov V (2014) Structural basis for smoothened receptor modulation and chemoresistance to anticancer drugs. Nat Commun 5(1):1–1

    Google Scholar 

  47. Lauth M, Bergström Å, Shimokawa T, Tostar U, Jin Q, Fendrich V, Guerra C, Barbacid M, Toftgård R (2010) DYRK1B-dependent autocrine-to-paracrine shift of hedgehog signaling by mutant RAS. Nat Struct Mol Biol 17(6):718

    Article  CAS  PubMed  Google Scholar 

  48. Gruber W, Hutzinger M, Elmer DP, Parigger T, Sternberg C, Cegielkowski L, Zaja M, Leban J, Michel S, Hamm S, Vitt D (2016) DYRK1B as therapeutic target in hedgehog/GLI-dependent cancer cells with smoothened inhibitor resistance. Oncotarget 7(6):7134

    Article  PubMed  PubMed Central  Google Scholar 

  49. Liu G, Huang W, Wang J, Liu X, Yang J, Zhang Y, Geng Y, Tan W, Zhang A (2017) Discovery of novel macrocyclic hedgehog pathway inhibitors acting by suppressing the Gli-mediated transcription. J Med Chem 60(19):8218–8245

    Article  CAS  PubMed  Google Scholar 

  50. Joly M, Haag-Berrurier M, Anton R (1980) La 5′-méthoxybilobétine, une biflavone extraite du Ginkgo biloba. Phytochemistry 19(9):1999–2002

    Article  CAS  Google Scholar 

  51. Ye ZN, Yu MY, Kong LM, Wang WH, Yang YF, Liu JQ, Qiu MH, Li Y (2015) Biflavone ginkgetin, a novel Wnt inhibitor, suppresses the growth of medulloblastoma. Nat Prod Bioprospect 5(2):91–97

    Article  CAS  PubMed Central  Google Scholar 

  52. Xin M, Zhang L, Tu C, Tang F, Wen J (2018) Novel 4-(2-pyrimidinylamino) benzamide derivatives as potent hedgehog signaling pathway inhibitors. Bioorg Med Chem 26(18):5029–5036

    Article  CAS  PubMed  Google Scholar 

  53. Wang C, Zhu M, Lu X, Wang H, Zhao W, Zhang X, Dong X (2018) Synthesis and evaluation of novel dimethylpyridazine derivatives as hedgehog signaling pathway inhibitors. Bioorg Med Chem 26(12):3308–3320

    Article  CAS  PubMed  Google Scholar 

  54. Lu X, Peng Y, Wang C, Yang J, Bao X, Dong Q, Zhao W, Tan W, Dong X (2017) Design, synthesis, and biological evaluation of optimized phthalazine derivatives as hedgehog signaling pathway inhibitors. Eur J Med Chem 138:384–395

    Article  CAS  PubMed  Google Scholar 

  55. Bao X, Peng Y, Lu X, Yang J, Zhao W, Tan W, Dong X (2016) Synthesis and evaluation of novel benzylphthalazine derivatives as hedgehog signaling pathway inhibitors. Bioorg Med Chem Lett 26(13):3048–3051

    Article  CAS  PubMed  Google Scholar 

  56. Berman DM, Karhadkar SS, Hallahan AR, Pritchard JI, Eberhart CG, Watkins DN, Chen JK, Cooper MK, Taipale J, Olson JM, Beachy PA (2020) Medulloblastoma growth inhibition by hedgehog pathway blockade. Science 297(5586):1559–1561

    Article  Google Scholar 

  57. Romer JT, Kimura H, Magdaleno S, Sasai K, Fuller C, Baines H, Connelly M, Stewart CF, Gould S, Rubin LL, Curran T (2004) Suppression of the Shh pathway using a small molecule inhibitor eliminates medulloblastoma in Ptc1+/− p53−/− mice. Cancer Cell 6(3):229–240

    Article  CAS  PubMed  Google Scholar 

  58. Wang J, Peng Y, Liu Y, Yang J, Huang M, Tan W (2015) AT-101 inhibits hedgehog pathway activity and cancer growth. Cancer Chemother Pharmacol 76(3):461–469

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

AA, AM, and JKY are thankful to Banaras Hindu University for financial support, and Upendra Kumar Patel is thankful to the Council of Scientific and Industrial Research, New Delhi, for Junior Research Fellowship.

Conflict of interest: The authors confirm that this chapter has no conflict of interest.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Maurya, A., Patel, U.K., Yadav, J.K., Singh, V.P., Agarwal, A. (2022). Challenges and Recent Advances of Novel Chemical Inhibitors in Medulloblastoma Therapy. In: Dey, A., Malhotra, A., Garg, N. (eds) Medulloblastoma. Methods in Molecular Biology, vol 2423. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1952-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1952-0_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1951-3

  • Online ISBN: 978-1-0716-1952-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics