Skip to main content

Evaluation of Physiological Characteristics of Bacterial Cells in Foods and Water with Flow Cytometry

  • Chapter
  • First Online:
Detection and Enumeration of Bacteria, Yeast, Viruses, and Protozoan in Foods and Freshwater

Abstract

Flow cytometry (FC) can be used to evaluate the physiological characteristics and to quantify accurately viable but nonculturable (VBNC) cells in food and water samples. The fluorescent dyes thiazole orange (TO), propidium iodide (PI), bis-1,3-dibutylbarbutiric acid (BOX), ethidium bromide (EB), and 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) enable to identify cell subpopulations and investigate cell functions, such as membrane integrity, membrane potential, efflux pump, and respiratory activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Postgate JR (1969) Viable counts and viability. Methods Microbiol 1:611–628

    Article  Google Scholar 

  2. Ou F, McGoverin C, Swift S, Vanholsbeeck F (2017) Absolute bacterial cell enumeration using flow cytometry. J Appl Microbiol 123:464–477

    Article  CAS  Google Scholar 

  3. Cheswicka R, Cartmell E, Lee S, Upton A, Weir P, Moore G, Nocker A, Jefferson B, Jarvis P (2019) Comparing flow cytometry with culture-based methods for microbial monitoring and as a diagnostic tool for assessing drinking water treatment processes. Environ Int 130:104893

    Article  Google Scholar 

  4. Davey H, Guyot S (2020) Estimation of microbial viability using flow cytometry. Curr Protoc Cytom 93:72

    Google Scholar 

  5. McHugh IOL, Tucker AL (2007) Flow cytometry for the rapid detection of bacteria in cell culture production medium. Cytometry A 71:1019–1026

    Article  Google Scholar 

  6. Raymond Y, Champagne CP (2015) The use of flow cytometry to accurately ascertain total and viable counts of lactobacillus rhamnosus in chocolate. Food Microbiol 46:176–183

    Article  Google Scholar 

  7. de Sousa Guedes JP, de Souza EL (2018) Investigation of damage to Escherichia coli, listeria monocytogenes and salmonella Enteritidis exposed to Mentha arvensis L. and M. piperita L. essential oils in pineapple and mango juice by flow cytometry. Food Microbiol 76:564–571

    Article  Google Scholar 

  8. Robben C, Fister S, Witte AK, Schoder D, Rossmanith P, Mester P (2018) Induction of the viable but nonculturable state in bacterial pathogens by household cleaners and inorganic salts. Sci Rep 8:15132

    Article  Google Scholar 

  9. Anvarian AHP, Smith MP, Overton TW (2019) Flow cytometry and growth-based analysis of the effects of fruit sanitation on the physiology of Escherichia coli in orange juice. Food Sci Nutr 7:1072–1108

    Article  CAS  Google Scholar 

  10. Barbosa IM, Almeida ETC, Castellano LRC, de Souza EL (2019) Influence of stressing conditions caused by organic acids and salts on tolerance of listeria monocytogenes to Origanum vulgare L. and Rosmarinus officinalis L. essential oils and damage in bacterial physiological functions. Food Microbiol 84:103240

    Article  Google Scholar 

  11. Ramírez-Castillo FY, Loera-Muro A, Jacques M, Garneau P, Avelar-González FJ, Harel J, Guerrero-Barrera AL (2015) Waterborne pathogens: detection methods and challenges. PathoGenetics 4:307–334

    Google Scholar 

  12. Safford HR, Bischel HN (2019) Flow cytometry applications in water treatment, distribution, and reuse: a review. Water Res 151:110–133

    Article  CAS  Google Scholar 

  13. Colwell RR (2000) Viable but nonculturable bacteria: a survival strategy. J Infect Chemother 6:121–125

    Article  CAS  Google Scholar 

  14. Morishige Y, Fujimori K, Amano F (2015) Use of flow cytometry for quantitative analysis of metabolism of viable but non-culturable (VBNC) salmonella. Biol Pharm Bull 38:1255–1264

    Article  CAS  Google Scholar 

  15. Fakruddin M, Bin Mannan KS, Andrews S (2013) Viable but nonculturable bacteria: food safety and public health perspective. ISRN Microbiol 2013:703813

    Article  Google Scholar 

  16. Li L, Mendis N, Trigui H, Oliver JD, Faucher SP (2014) The importance of the viable but non-culturable state in human bacterial pathogens. Front Microbiol 5:258

    PubMed  PubMed Central  Google Scholar 

  17. Wilkinson MG (2018) Flow cytometry as a potential method of measuring bacterial viability in probiotic products: a review. Trends Food Sci Technol 78:1–10

    Article  CAS  Google Scholar 

  18. Almeida ETC, Souza GT, Sousa Guedes JP, Barbosa IM, Sousa CP, Castellano LRC, Magnani M, Souza EL (2019) Mentha piperita L. essential oil inactivates spoilage yeasts in fruit juices through the perturbation of different physiological functions in yeast cells. Food Microbiol 82:20–29

    Google Scholar 

  19. Souza Pedrosa GT, Souza EL, Melo ANF, Almeida ETC, Sousa Guedes JP, Carvalho RJ, Pagan R, Magnani M (2020) Physiological alterations involved in inactivation of autochthonous spoilage bacteria in orange juice caused by citrus essential oils and mild heat. Int J Food Microbiol 334:108837

    Article  Google Scholar 

  20. Hameed S, Xie L, Ying Y (2018) Conventional and emerging detection techniques for pathogenic bacteria in food science: a review. Trends Food Sci Technol 81:61–73

    Article  CAS  Google Scholar 

  21. Michelutti L, Bulfoni M, Nencioni E (2020) A novel pharmaceutical approach for the analytical validation of probiotic bacterial count by flow cytometry. J Microbiol Methods 170:105834

    Article  CAS  Google Scholar 

  22. McMahon MAS, Tunney MM, Moore JE, Blair IS, Gilpin DF, McDowell DA (2008) Changes in antibiotic susceptibility in staphylococci habituated to sublethal concentrations of tea tree oil (Melaleuca alternifolia). Lett Appl Microbiol 47:263–268

    Article  CAS  Google Scholar 

  23. Gatza E, Peña PV, Srienc F, Overton T, Lavarreda CA, Rogers CE (2012) Bioprocess monitoring with the BD Accuri™ C6 flow cytometer. BD Biosciences 2012:1–16

    Google Scholar 

  24. Richards AJ, Staats J, Enzor J, McKinnon K, Frelinger J, Denny TN, Weinhold KJ, Chan C (2014) Setting objective thresholds for rare event detection in flow cytometry. J Immunol Methods 409:54–61

    Article  CAS  Google Scholar 

  25. Silva F, Ferreira S, Queiroz JA, Domingues FC (2011) Coriander (Coriandrum sativum L.) essential oil: its antibacterial activity and mode of action evaluated by flow cytometry. J Med Microbiol 60:1479–1486

    Article  CAS  Google Scholar 

  26. Surowsky B, Fröhling A, Gottschalk N, Schlüter O, Knorr D (2014) Impact of cold plasma on Citrobacter freundii in apple juice: inactivation kinetics and mechanisms. Int J Food Microbiol 174:63–71

    Article  CAS  Google Scholar 

  27. Hammer KA, Heel KA (2012) Use of multiparameter flow cytometry to determine the effects of monoterpenoids and phenylpropanoids on membrane polarity and permeability in staphylococci and enterococci. Int J Antimicrob Agents 40:239–245

    Article  CAS  Google Scholar 

  28. Léonard L, Chibane LB, Bouhedda BO, Degraeve P, Oulahal N (2016) Recent advances on multi-parameter flow cytometry to characterize antimicrobial treatments. Front Microbiol 7:1225

    Article  Google Scholar 

  29. Rubbens P, Props R, Garcia-Timermans C, Boon N, Waegeman W (2017) Stripping flow cytometry: how many detectors do we need for bacterial identification? Cytometry A 91A:1184–1191

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jossana Pereira de Sousa Guedes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de Sousa Guedes, J.P., de Souza, E.L. (2021). Evaluation of Physiological Characteristics of Bacterial Cells in Foods and Water with Flow Cytometry. In: Magnani, M. (eds) Detection and Enumeration of Bacteria, Yeast, Viruses, and Protozoan in Foods and Freshwater. Methods and Protocols in Food Science . Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1932-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1932-2_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1931-5

  • Online ISBN: 978-1-0716-1932-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics