Skip to main content

Peptides as Therapeutic Agents for Atherosclerosis

  • Protocol
  • First Online:
Atherosclerosis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2419))

Abstract

More than three decades ago, as a test for the amphipathic helix theory, an 18 amino acid residue peptide and its analogs were designed with no sequence homology to any of the exchangeable apolipoproteins. Based on the apolipoprotein A-I (the major protein component of high density lipoproteins, HDL) mimicking properties, they were termed as ApoA-I mimicking peptides. Several laboratories around the world started studying such de novo-designed peptides for their antiatherogenic properties. The present chapter describes the efforts in bringing these peptides as therapeutic agents for atherosclerosis and several lipid-mediated disorders.

In Memory of Dr. Geeta Datta, who left us in January 2020.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kontush A, Chapman J (2006) Functionally defective high-density lipoprotein: a new therapeutic target at the crossroads of dyslipidemia, inflammation and atherosclerosis. Pharmacol Rev 58:342–374

    Article  CAS  PubMed  Google Scholar 

  2. Hulley SB, Cohen R, Widdowson G (1977) Plasma high-density lipoprotein cholesterol level. Influence of risk factor intervention. JAMA 238:2269–2271

    Article  CAS  PubMed  Google Scholar 

  3. Badimon JJ, Badimon L, Fuster V (1990) Regression of atherosclerotic lesions by high density lipoprotein plasma fraction in the cholesterol-fed rabbit. J Clin Invest 85:1234–1241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rubin EM, Krauss RM, Spangler EA, Verstuyft JG, Clift SM (1991) Inhibition of early atherogenesis in transgenic mice by human apolipoprotein AI. Nature 353:265–267

    Article  CAS  PubMed  Google Scholar 

  5. Nissen S, Tusnoda T, Tuzcu EM, Schoenhagen P, Cooper CJ, Yasin M, Eaton GM, Lauer MA, Sheldon WS, Grines CL, Halpern S, Crowe T, Blankenship JC, Kerensky R (2003) Effect of apoA-I Milano on atherosclerosis in patients with acute coronary syndromes. A randomized controlled trail. JAMA 290:2292–2300

    Article  CAS  PubMed  Google Scholar 

  6. Erickson M, Carson LA, Miettinen TA, Angelin B (1999) Stimulation of fecal excretion after infusion of recombinant proapolipoproteinA-I. Circulation 100:594–598

    Article  Google Scholar 

  7. Nanjee MN, Doran JE, Lerch PG, Miller NE (1999) Acute effects of intravenous infusion of ApoA-I/phosphatitylcholine discs on plasma lipoproteins in humans. Atheroscler Thromb Vasc Biol 19:979–989

    Article  CAS  Google Scholar 

  8. Kunitake ST, Jarvis MR, Hamilton RL, Kane JP (1992) Binding of transition metals by apolipoprotein A-I–containing plasma lipoproteins: inhibition of oxidation of low density lipoproteins. Proc Natl Acad Sci U S A 89:6993–6997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Futterman LG, Lemberg L (2005) Apo A-I Milano. Am J Crit Care 14:244–247

    Article  PubMed  Google Scholar 

  10. Nissen SE, Tardif J-C, Nicholls SJ, Revkin JH, Shear CL, Duggan WT, Ruzyllo W, Bachinsky WB, Lasala GP, Tuzcu EM (2007) Effect of Torcetrapib on the progression of coronary atherosclerosis. NEJM 356:1304–1316

    Article  CAS  PubMed  Google Scholar 

  11. Castellini WP (1996) Lipids, risk factors and ischaemic heart disease. Atherosclerosis 124:S1–S9

    Article  Google Scholar 

  12. Barter PJ, Nicholls S, Rye KA, Anantharamaiah GM, Navab M, Fogelman AM (2004) Antiinflammatory properties of HDL. Circ Res 95:764–772

    Article  CAS  PubMed  Google Scholar 

  13. Navab M, Anantharamaiah GM, Reddy ST, Van Lenten BJ, Ansell BJ, Hama S, Hough G, Wagner AC, Shaposhnik Z, Fogelman AM (2005) The double jeopardy of HDL. Anals Med 37:173–178

    CAS  Google Scholar 

  14. Sniderman AD, Thanassoulis G, Glavinovic T, Navar AM, Pencina M, Catapano A, Ference BA (2019) Apolipoprotein B containing particles and cardiovascular risk. JAMA Cardiol 4:1287–1295

    Article  PubMed  PubMed Central  Google Scholar 

  15. Shah PK, Kaul S, Nilsson J, Cercek B (2001) Exploiting the vascular protective effects of high-density lipoprotein and its apolipoproteins: an idea whose time for testing is coming, part I. Circulation 104:2376–2383

    Article  CAS  PubMed  Google Scholar 

  16. Murphy AJ, Westerterp M, Yvan-Charvel L, Tall AR (2012) Anti-atherogenic mechanisms of high density lipoprotein: effects on myeloid cells. Biochim Biophys Acta 182:513–521

    Article  Google Scholar 

  17. Segrest JP, Jackson RL, Morrisett JD, Gotto AM Jr (1974) A molecular theory of lipid-protein interactions in plasma lipoproteins. FEBS Lett 38:247–253

    Article  CAS  PubMed  Google Scholar 

  18. Segrest JP, Brouillette CG, Garber DW, Harvey S, Anantharamaiah GM (1994) The amphipathic α-helix: a multifunctional and structural motif in plasma lipoproteins. Adv Protein Chem 45:303–309

    Article  CAS  PubMed  Google Scholar 

  19. Anantharamaiah GM, Jones JL, Brouillette CG, Schmidt CF, Chung BH, Hughes TA, Bhown AS, Segrest JP (1985) Studies of synthetic peptide analogs of the amphiphatic helix. Structure of complexes with dimyristoyl phosphatidylcholine. J Biol Chem 260:10248–10255

    Article  CAS  PubMed  Google Scholar 

  20. Arnulphi C, Sanchez SA, Tricerri A, Gratton E, Jonas A (2005) Interaction of human apolipoprotein A-I with model membranes exhibiting lipid domains. Biophys J 89:285–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Van Lenten BJ, Wagner AC, Jung CL, Ruchala P, Waring AJ, Lehrer RI, Watson AD, Hama S, Navab M, Anantharamaiah GM, Fogelman AM (2008) Anti-inflammatory apoA-I-mimetic peptides bind oxidized lipids with much higher affinity than human apoA-I. J Lipid Res 49:2302–2311

    Article  PubMed  PubMed Central  Google Scholar 

  22. Navab M, Imes SS, Hama SY, Hough GP, Lori A, Ross LA, Bork RW, Valente AJ, Berliner JA, Drinkwater DC, Lakas H, Fogelman AM (1991) Monocyte transmigration induced by modification of low density lipoprotein in cocultures of human aortic wall cells is due to induction of monocyte chemotactic protein 1 synthesis and is abolished by high density lipoprotein. J Clin Invest 88:2039–2046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mackness MI, Durrington PN (1995) HDL, its enzymes and its potential to influence lipid peroxidation. Atherosclerosis 115:243–253

    Article  CAS  PubMed  Google Scholar 

  24. Garber DW, Datta G, Chaddha M, Palgunachari MN, Hama SY, Navab M, Fogelman A, Segrest JP, Anantharamaiah GM (2001) A new synthetic class A amphipathic peptide analogue protects mice from diet-induced atherosclerosis. J Lipid Res 42:545–552

    Article  CAS  PubMed  Google Scholar 

  25. Navab M, Anantharamaiah GM, Reddy ST, Hama S, Hough G, Grijalva VR, Mishra VK, Palgunachari MN, Fogelman AM (2005) Oral small peptides render HDL antiinflammatory in mice and monkeys and reduce atherosclerosis in ApoE null mice. Circ Res 97:524–532

    Article  CAS  PubMed  Google Scholar 

  26. Van Lenton BJ, Wagner AC, Navab M, Anantharamaiah GM, Hui K-W, Nayak DP, Fogelman AM (2004) D-4F, an apolipoprotein A-I mimetic peptide, inhibits the inflammatory response induced by influenza A infection of human type II pneumocytes. Circulation 110:3252–3258

    Article  Google Scholar 

  27. Sharifov OF, Xu X, Gaggar A, Grizzle WE, Mishra VK, Honavar J, Litovsky SH, Palgunachari MN, White CR, Anantharamaiah GM, Gupta H (2013) Anti-inflammatory mechanisms of apolipoprotein A-I mimetic peptide in acute respiratory distress syndrome secondary to sepsis. PLoS One 8(5):e64486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gupta H, Dai L, Datta G, Garber DW, Grenett H, Lee Y, Mishra VK, Palgunachari MN, Handattu S, Gianturco SH, Bradley W, Anantharamaiah GM, White CR (2005) Inhibition of lipopolysaccharide-induced inflammatory responses by an apolipoprotein AI mimetic peptide. Circ Res 97:236–243

    Article  CAS  PubMed  Google Scholar 

  29. Liu D, Ding Z, Wu M, Xu W, Qian M, Du Q, Zhang L, Cui Y, Zheng J, Chang H, Huang C, Lin D, Wang Y (2017) The apolipoprotein A-I mimetic peptide, D-4F, alleviates ox-LDL-induced oxidative stress and promotes endothelial repair through the eNOS/HO-1 pathway. J Mol Cell Cardiol 105:77–88

    Article  CAS  PubMed  Google Scholar 

  30. Kruger AL, Peterson S, Turkseven S, Kaminski PM, Zhang FF, Quan S, Wolin MS, Abraham NG (2005) D-4F induces heme oxygenase-1 and extracellular superoxide dismutase, decreases endothelial cell sloughing, and improves vascular reactivity in rat model of diabetes. Circulation 111:3126–3134

    Article  CAS  PubMed  Google Scholar 

  31. Buga GM, Frank JS, Mottino GA, Hendizadeh M, Hakhamian A, Tillisch JH, Reddy ST, Navab M, Anantharamaiah GM, Ignarro LJ, Fogelman AM (2006) D-4F decreases brain arteriole inflammattion and improves cognitive performance in LDL receptor-null-mice on a Western diet. J Lipid Res 47:2148–2160

    Article  CAS  PubMed  Google Scholar 

  32. Navab M, Anantharamaiah GM, Hama S, Hogh G, Reddy ST, Frank JS, Garber DW, Handattu S, Fogelman A (2005) D-4F and statins synergize to render HDL anti-inflammatory in mice and monkeys and cause lesion regression in old apolipoprotein E-null mice. Arterioscler Thromb Vasc Biol 25:1426–1432

    Article  CAS  PubMed  Google Scholar 

  33. Ou Z, Ou J, Ackerman A, Oldham KT, Prichard KA Jr (2003) L-4F, an apolipoprotein A-1 mimetic, restores nitric oxide and superoxide anion balance in low-density lipoprotein-treated endothelial cells. Circulation 107:1520–1524

    Article  CAS  PubMed  Google Scholar 

  34. Handattu SP, Garber DW, Monroe CE, van Groen T, Kadish I, Nayyar G, Cao D, Palgunachari MN, Li L, Anantharamaiah GM (2009) Oral apolipoprotein A-I mimetic peptide improves cognitive function and reduces amyloid burden in a mouse model of Alzheimer’s Disease. Neurobiol Dis 34:525–534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Schnickel GT, Hsieh GR, Kachikwu EL, Garcia C, Shefizadeh A, Fishbein M, Ardehali A (2006) Cytoprotective gene HO-1 and chronic rejection in heart transplantation. Transplant Proc 38:3259–3262

    Article  CAS  PubMed  Google Scholar 

  36. Nandedkar SD, Weihrauch D, Xu H, Shi Y, Feroah T, Hutchins W, Rickaby DA, Duzgunes N, Hillery CA, Konduri KS, Pritchard KA Jr (2011) D-4F, an apoA-1 mimetic, decreases airway hyperresponsiveness, inflammation, and oxidative stress in a murine model of asthma. J Lipid Res 252:499–508

    Article  Google Scholar 

  37. Charles-Schoeman C, Banquerigo ML, Hama S, Navab M, Park GS, Van Lenten BJ, Wagner AC, Fogelman AM, Brahn E (2008) Treatment with an apolipoprotein A-1 mimetic peptide in combination with pravastatin inhibits collagen-induced arthritis. Clin Immunol 127(2):234–244

    Article  CAS  PubMed  Google Scholar 

  38. Cao J, Puri N, Sodhi K, Bellner L, Abraham NG, Kappas A (2012) ApoA-I mimetic rescues the diabetic phenotype of HO-2 knockout mice via an increase in HO-1 adiponectin and LKBI signaling pathway. Int J Hypertens 2012:628147

    Article  PubMed  PubMed Central  Google Scholar 

  39. Peterson SJ, Kim DH, Li M, Positano V, Vanella L, Rodella LF, Piccolomini F, Puri N, Gastaldelli A, Kusmic C, L’Abbate A, Abraham NG (2009) The L-4F mimetic peptide prevents insulin resistance through increased levels of HO-1, pAMPK, and pAKT in obese mice. J Lipid Res 50:1293–1304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Vecoli C, Cao J, Neglia D, Inoue K, Sodhi K, Vanella L, Gabrielson KK, Bedia D, Paolocci N, L’abbate A, Abraham NG (2011) Apolipoprotein A-I mimetic peptide L-4F prevents myocardial and coronary dysfunction in diabetic mice. J Cell Biochem 112:2616–2626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Marino JS, Peterson SJ, Li M, Vanella L, Sodhi K, Hill JW, Abraham NG (2012) ApoA-1 mimetic restores adiponectin expression and insulin sensitivity independent of changes in body weight in female obese mice. Nutr Diab 12:e33

    Article  Google Scholar 

  42. Vanella L, Li M, Kim D, Malfa G, Bellner L, Kawakami T, Abraham NG (2012) ApoA1: mimetic peptide reverses adipocyte dysfunction in vivo and in vitro via an increase in hemoxygenase (HO-1) and Wnt10b. Cell Cycle 11:706–714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dai L, Datta G, Zhang Z, Gupta H, Patel R, Honavar J, Modi S, Wyss JM, Palgunachari M, Anantharamaiah GM, White CR (2010) The apolipoprotein A-I mimetic peptide 4F prevents defects in vascular function in endotoxemic rats. J Lipid Res 51:2695–2705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ou Z, Jones DW, Holzhauer S, Hartoum OA, Ackerman AW, Gutternan DD, Guice K, Oldham KT, Hillery CA, Prichard KA Jr (2003) L-4F, an apolipoprotein A-1 mimetic, dramatically improves vasodilation in hypercholesterolemia and sickle. Cell Dis 107:2337–2341

    CAS  Google Scholar 

  45. Su F, Kozaka KR, Imaizumib S, Gao F, Amneusa MW, Grijalva V, Ng C, Wagner A, Hough G, Farias-Eisner G, Anantharamaiah GM, Van Lenten BJ, Mohamad M, Fogelman AM, Reddy ST, Farias-Eisner R (2010) Apolipoprotein A-I (apoA-I) and apoA-I mimetic peptides inhibit tumor development in a mouse model of ovarian cancer. Proc Natl Acad Sci U S A 107:19997–12000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Buga GM, Navab M, Imaizumi S, Reddy ST, Yekta B, Hough G, Chanslor S, Anantharamaiah GM, Fogelman AM (2010) 4F ameliorates hyperlipidemia-induced platelet aggregation inhibition L-4F alters hyperlipidemic (but not normal) mouse plasma to reduce platelet aggregation. Arterioscler Thromb Vasc Biol 30(2):283–292

    Article  CAS  PubMed  Google Scholar 

  47. Meriwether D, Sulaiman D, Volpe C, Dorfman A, Grijalva V, Dorreh N, Solorzano-Vargas RS, Wang J, O’Connor E, Papesh J, Larauche M, Trost H, Palgunachari MN, Anantharamaiah GM, Herschman HR, Martin MG, Fogelman AM, Reddy ST (2019) Apolipoprotein A-I mimetics mitigate intestinal inflammation in COX2-dependent inflammatory bowel disease model. J Clin Invest 129:3670–3685

    Article  PubMed  PubMed Central  Google Scholar 

  48. Rudolf M, Curcio C, Schlötzer-Schrehardt U, Mir A, Sefat M, Tura A, Aherrahrou Z, Brinkmann M, Grisanti S, Miura Y, Ranjbar M (2019) Apolipoprotein A-I mimetic peptide L-4F removes Bruch’s membrane lipids in aged nonhuman primates. Invest Ophthalmol Vis Sci 60:461–472

    Article  CAS  PubMed  Google Scholar 

  49. Rudolf M, Mir Mohi Sefat A, Miura Y, Tura A, Raasch W, Ranjbar M, Grisanti S, Aherrahrou Z, Wagner A, Messinger JD, Garber DW, Anantharamaiah GM, Curcio CA (2018) ApoA-I mimetic peptide 4F reduces age-related lipid deposition in murine Bruch’s membrane and causes its structural remodeling. Curr Eye Res 43:135–146

    Article  CAS  PubMed  Google Scholar 

  50. Zhang J, Cui Y, Li X, Xiao Y, Liu L, Jia F, He J, Xie X, Parthasarathy S, Hao H, Fang N (2020) 5F peptide promotes endothelial differentiation of bone marrow stem cells through activation of ERK1/2 signaling. Eur J Pharmacol 876:173051–173060

    Article  CAS  PubMed  Google Scholar 

  51. Hamid T, Ismahil MA, Bansal SS, Patel B, Goel M, White CR, Anantharamaiah GM, Prabhu SD (2020) The apolipoprotein A-I mimetic L-4F attenuates monocyte activation and adverse cardiac remodeling after myocardial infarction. Int J Mol Sci 21:3519–3534

    Article  CAS  PubMed Central  Google Scholar 

  52. Navab M, Ruchala P, Waring AJ, Lehrer RL, Hama S, Hough G, Palgunachari MN, Anantharamaiah GM, Fogelman AM (2009) A novel method for oral delivery of apolipoprotein mimetic peptides synthesized from all L-amino acids. J Lipid Res 50:1538–1547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Navab M, Anantharamaiah GM, Reddy ST, Hama S, Hough G, Grijalva VR, Wagner AC, Frank JS, Datta G, Garber D, Fogelman AM (2004) Oral D-4F causes formation of pre-β high-density lipoprotein and improves high-density lipoprotein-mediated cholesterol efflux and reverse cholesterol transport from macrophages in apolipoprotein E-null mice. Circulation 109:3215–3220

    Article  CAS  PubMed  Google Scholar 

  54. Sahoo BR, Genjo T, Cox SJ, Stoddard AK, Anantharamaiah GM, Fierke C, Ramamoorthy AJ (2018) Nanodisc-forming scaffold protein promoted retardation of amyloid-beta aggregation. Mol Biol 430:4230–4244

    Article  CAS  Google Scholar 

  55. Peterson SJ, Drummond G, Kim DH, Li M, Kruger AL, Ikehara S, Abraham NG (2008) L-4F treatment reduces adiposity, increases adiponectin levels, and improves insulin sensitivity in obese mice. J Lipid Res 49:1658–1669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chattopadhyay A, Navab M, Hough G, Gao F, Merriweather D, Grijalva V, Springstead JR, Palgnachari MN, Namiri-Kalantari R, Su F, Van Lenten BJ, Wagner AC, Anantharamaiah GM, Frais-Eisner R, Reddy ST, Fogelman AM (2013) A novel approach to apoA-I mimetic therapy. J Lipid Res 54:995–1010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Smythies LE, White CR, Maheshwari A, Palgunachari MN, Anantharamaiah GM, Chaddha M, Kurundkar AR, Datta G (2010) Apolipoprotein A-I mimetic 4F alters the function of human monocyte-derived macrophages. Am J Phys Cell Physiol 298:C1538–C1548

    Article  CAS  Google Scholar 

  58. Li X, Chyu K-Y, Faria JR, Yano J, Nathwani N, Ferreira C, Dimayuga PC, Cercek B, Kaul S, Shah PK (2004) Differential effects of apolipoprotein A-I-mimetic peptide on evolving and established atherosclerosis in apolipoprotein E-null mice. Circulation 110:1701–1705

    Article  CAS  PubMed  Google Scholar 

  59. Remaley AT, Thomas F, Stonik JA, Demosky SJ, Bark SE, Neufeld EB, Bocharov AV, Vishnyakova TG, Patterson AP, Eggerman TL, Santamarina-Fojo S, Brewer B (2003) Synthetic amphipathic helical peptides promote lipid efflux from cells by an ABCA1-dependent and an ABCA1-independent pathway. J Lipid Res 44:828–836

    Article  CAS  PubMed  Google Scholar 

  60. Sethi AA, Stonik JA, Thomas F, Demosky SJ, Amar M, Neufeld E, Brewer HB, Davidson WS, D’Souza W, Sviridov D, Remaley A (2008) Asymmetry in the lipid affinity of bihelical amphipathic peptides. A structural determinant for the specificity of ABCA1-dependent cholesterol efflux by peptides. J Biol Chem 283:32273–32282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Mendez A, Anantharamaiah GM, Segrest JP, Oram JF (1994) Synthetic amphipathic helical peptides that mimic apolipoprotein A-I in clearing cellular cholesterol. J Clin Invest 94:1698–1705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Barnaba C, Sahoo BR, Ravula T, Medina-Meza IG, Im SC, Anantharamaiah GM, Waskell L, Ramamoorthy A (2018) Cytochrome-P450-induced ordering of microsomal membranes modulates affinity for drugs. Angew Chem Int Ed Eng 57:3391–3395

    Article  CAS  Google Scholar 

  63. Wool GD, Cabana VG, Lukens J, Shaw PX, Binder CJ, Witztum JL, Reardon CA, Getz GS (2011) 4F Peptide reduces nascent atherosclerosis and induces natural antibody production in apolipoprotein E-null mice. FASEB J 25:290–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bielicki JK, Zhang H, Cortez Y, Zheng Y, Narayanaswami V, Patel A, Johansson J, Azhar S (2010) A new HDL mimetic peptide that stimulates cellular cholesterol efflux with high efficiency greatly reduces atherosclerosis in mice. J Lipid Res 51:1496–1503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Fukushima D, Kupferberg JP, Yokoyama S, Kroon DJ, Kaiser ET, Kézdy FJ (1979) A synthetic amphiphilic helical docosapeptide with the surface properties of plasma apolipoprotein A-I. J Am Chem Soc 101:3703–3704

    Article  CAS  Google Scholar 

  66. Yokohama S, Fukushima D, Kupferberg JP, Kézdy FJ, Kaiser ET (1980) The mechanism of activation of lecithin: cholesterol acyl transferase by apolipoprotein A-I and an amphiphilic peptide. J Biol Chem 255:7333–7339

    Article  Google Scholar 

  67. Labuer C, Lins L, Vanloo B, Brasseur R, Rossenue M (1997) Design of a new class of amphipathic helical peptides for the plasma apolipoproteins that promote cellular cholesterol efflux but do not activate LCAT. Arterioscler Thromb Vasc Biol 17:580–588

    Article  Google Scholar 

  68. Navab M, Reddy ST, Anantharamaiah GM, Imaizumi S, Hogh G, Hama S, Fogelman A (2011) Intestine may be a major site of action for the apoA-I mimetic peptide 4F whether administered subcutaneously or orally. J Lipid Res 52:1200–1210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Garber DW, Venkatachalapathi YV, Gupta KB, Ibdah J, Phillips MC, Hazelrig A, Segrest J, Anantharamaiah GM (1992) Turnover of synthetic class A amphipathic peptide analogues of exchangeable apolipoproteins in rats. Correlation with physical properties. Aterio Thromb 12:886–894

    Article  CAS  Google Scholar 

  70. Bloedon LT, Dunbar R, Duffy D, Pinell-Salles P, Norris R, DeGroot BJ, Movva R, Navab M, Fogelman AM, Rader DJ (2008) Safety, pharmacokinetics, and pharmacodynamics of oral apoA-I mimetic peptide D-4F in high-risk cardiovascular patients. J Lipid Res 49:1344–1352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Dunbar RL, Bloedon LT, Duffy D, Norris RB, Movva, Navab M, Fogelman AM, Rader DJ (2007) Daily oral administration of the apolipoprotein A-I mimetic peptide D-4F in patients with coronary heart disease or equivalent risk improves high-density lipoprotein anti-inflammatory function. J Am Coll Cardiol 49(Suppl A):1014–1123

    Google Scholar 

  72. Watson CE, Weissbach N, Kjems L, Ayalasomayajula S, Zhang Y, Chang I, Navab M, Hama S, Hough G, Reddy ST, Soffer D, Rader DJ, Fogelman AM, Schecter A (2011) Treatment of patients with cardiovascular disease with L-4F, an apoA1 mimetic, did not improve select biomarkers of HDL function. J Lipid Res 52:361–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Harris JD, Evans V, Owen JS (2006) ApoE gene therapy to treat hyperlipidemia and atherosclerosis. Curr Opion Mol Ther 8:275–287

    CAS  Google Scholar 

  74. Clay MA, Anantharamaiah GM, Mistry MJ, Balasubramaniam A, Harmony JAK (1995) Localization of a domain in apolipoprotein E with both cytostatic and cytotoxic activity. Biochemistry 34:11142–11151

    Article  CAS  PubMed  Google Scholar 

  75. Nikoulin IR, Curtiss LK (1998) An apolipoprotein E synthetic peptide targets to lipoproteins in plasma and mediates both cellular lipoprotein interactions in vitro and acute clearance of cholesterol-rich lipoproteins in vivo. J Clin Invest 101:223–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Datta G, Chaddha M, Garber DW, Chung BH, Tytler EM, Dashti N, Bradley WA, Gianturco SH, Anantharamaiah GM (2000) The receptor binding domain of apolipoprotein E, linked to a model class A amphipathic helix, enhances internalization and degradation of LDL by fibroblasts. Biochemistry 39:213–220

    Article  CAS  PubMed  Google Scholar 

  77. Garber DW, Handattu S, Aslan I, Datta G, Chaddha M, Anantharamaiah GM (2003) Effect of an arginine-rich amphipathic helical peptide on plasma cholesterol in dyslipidemic mice. Atherosclerosis 168:229–237

    Article  CAS  PubMed  Google Scholar 

  78. Datta G, Chaddha M, Handattu SP, Palgunachari MN, Nayyar G, Garber DW, Gupta H, White CR, Anantharamaiah GM (2010) ApoE mimetic peptide reduces plasma lipid hydroperoxide content with a concomitant increase in HDL paraoxonase activity. Adv Exp Med Biol 660:1–4

    Article  CAS  PubMed  Google Scholar 

  79. Handattu SP, Monroe CE, Nayyar G, Palgunachari MN, Kadish I, van Groen T, Anantharamaiah GM, Garber DW (2013) In vivo and in vitro effects of an apolipoprotein E mimetic peptide on amyloid-beta pathology. J Alzheimers Dis 36:335–347

    Google Scholar 

  80. Anantharamaiah GM, Garber DW, Goldberg D, Morell E, Datta G, Palgunachari MN, Registrar TC, Appt SE, White CR (2018) Novel fatty acyl apoE mimetic peptides have increased potency to reduce plasma cholesterol in mice and macaques. J Lipid Res 59:2075–2083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Garber DW, Goldberg D, Anantharamaiah GM (2015) Apolipoprotein mimetic peptides: cholesterol-dependent and cholesterol-independent properties. In: Anantharamaiah GM, Goldberg D (eds) Apolipoprotein mimetics in the management of human disease. ADIS, Basel, pp 135–156

    Chapter  Google Scholar 

  82. Handattu SP, Datta G, Epand RM, Epand RF, Palgunachari MN, Mishra VK, Monroe CE, Keenum TD, Chaddha M, Anantharamaiah GM, Garber DW (2010) Oral administration of L-mR18L, a single domain cationic amphipathic helical peptide, inhibits lesion formation in ApoE null mice. J Lipid Res 51:3491–3499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Nayyar G, Handattu SP, Monroe CE, Chaddha M, Datta G, Mishra VK, Keenum TD, Palgunachari MN, Garber DW, Anantharamaiah GM (2010) Two adjacent domains (141-150 and 151-160) of apoE covalently linked to a class A amphipathic helical peptide exhibit opposite atherogenic effects. Atherosclerosis 213:449–457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Gupta H, White CR, Handattu S, Garber DW, Datta G, Chaddha M, Dai L, Gianturco SH, Bradley WA, Anantharamaiah GM (2005) Apolipoprotein E mimetic peptide dramatically lowers plasma cholesterol and restores endothelial function in Watanabe heritable hyperlipidemic rabbits. Circulation 111:3112–3118

    Article  CAS  PubMed  Google Scholar 

  85. Handattu SP, Nayyar G, Garber DW, Palgunachari MN, Monroe CE, Keenum TD, Mishra VK, Datta G, Anantharamaiah GM (2013) Two apolipoprotein E mimetic peptides with similar cholesterol reducing properties exhibit differential atheroprotective effects in LDL-R null mice. Atherosclerosis 227:58–64

    Article  CAS  PubMed  Google Scholar 

  86. Sharifov OF, Nayyar G, Ternovoy VV, Mishra VK, Litovsky SH, Palgunachari MN, Garber DW, Anantharamaiah GM, Gupta H (2013) Cationic peptide mR18L with lipid lowering properties inhibits LPS-induced systemic and liver inflammation in rats. Biochem Biophys Res Commun 436:705–710

    Article  CAS  PubMed  Google Scholar 

  87. Vitek MP, Christensen DJ, Wilcock J, Davis WE, Van Nostrand Li FQ, Colton CA (2012) APOE-mimetic peptides reduce behavioral deficits, plaques and tangles in Alzheimer’s disease transgenics. Neurodegener Dis 10:122–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Vitek MP, Li F, Colton CA (2015) Apolipoprotein-E and mimetics as targets and therapeutics for Alzheimer’s Disease. In: Anantharamaiah GM, Goldberg D (eds) Apolipoprotein mimetics in the management of human disease. Springer International Publishing, Basel, pp 157–182

    Chapter  Google Scholar 

  89. Lappegård T, Abendstein Kjellmo C, Ljunggren S, Cederbrant K, Marcusson-Ståhl M, Mathisen M, Karlsson H, Hovland A (2018) Lipoprotein apheresis affects lipoprotein particle subclasses more efficiently compared to the PCSK9 inhibitor evolocumab, a pilot study. Transfus Apher Sci 57:91–96

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. M. Anantharamaiah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

White, C.R., Palgunachari, M., Wolkowicz, P., Anantharamaiah, G.M. (2022). Peptides as Therapeutic Agents for Atherosclerosis. In: Ramji, D. (eds) Atherosclerosis. Methods in Molecular Biology, vol 2419. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1924-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1924-7_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1923-0

  • Online ISBN: 978-1-0716-1924-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics