Skip to main content

Flow Cytometry and Mass Cytometry for Measuring the Immune Cell Infiltrate in Atherosclerotic Arteries

  • Protocol
  • First Online:
Atherosclerosis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2419))

Abstract

Atherosclerosis is characterized by the abundant infiltration of immune cells starting at early stages and progressing to late stages of the disease. The study and characterization of immune cells infiltrating and residing in the aorta has being tackled by several methodologies such as flow cytometry and mass cytometry (CyTOF). Flow cytometry has been primarily used to address the aortic leukocyte composition; however, only a limited number of markers can be analyzed simultaneously. CyTOF started to overcome these limitations by employing rare element-tagged antibodies and combines mass spectrometry with the ease and precision of flow cytometry. CyTOF currently allows for the simultaneous measurement of more than 40 cellular parameters at single-cell resolution.

In this chapter, we describe the methodology used to isolate single immune cells from mouse aortas, followed by protocols for flow cytometry and CyTOF for aortic immune cell characterization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weber C, Zernecke A, Libby P (2008) The multifaceted contributions of leukocyte subsets to atherosclerosis: lessons from mouse models. Nat Rev Immunol 8(10):802–815. https://doi.org/10.1038/nri2415

    Article  CAS  PubMed  Google Scholar 

  2. Getz GS, Reardon CA (2012) Animal models of atherosclerosis. Arterioscler Thromb Vasc Biol 32(5):1104–1115. https://doi.org/10.1161/ATVBAHA.111.237693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jonasson L, Holm J, Skalli O, Bondjers G, Hansson GK (1986) Regional accumulations of T cells, macrophages, and smooth muscle cells in the human atherosclerotic plaque. Arteriosclerosis 6(2):131–138. https://doi.org/10.1161/01.atv.6.2.131

    Article  CAS  PubMed  Google Scholar 

  4. Galkina E, Kadl A, Sanders J, Varughese D, Sarembock IJ, Ley K (2006) Lymphocyte recruitment into the aortic wall before and during development of atherosclerosis is partially L-selectin dependent. J Exp Med 203(5):1273–1282. https://doi.org/10.1084/jem.20052205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hamers AAJ, Dinh HQ, Thomas GD, Marcovecchio P, Blatchley A, Nakao CS, Kim C, McSkimming C, Taylor AM, Nguyen AT, McNamara CA, Hedrick CC (2019) Human monocyte heterogeneity as revealed by high-dimensional mass cytometry. Arterioscler Thromb Vasc Biol 39(1):25–36. https://doi.org/10.1161/ATVBAHA.118.311022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Clement M, Raffort J, Lareyre F, Tsiantoulas D, Newland S, Lu Y, Masters L, Harrison J, Saveljeva S, Ma MKL, Ozsvar-Kozma M, Lam BYH, Yeo GSH, Binder CJ, Kaser A, Mallat Z (2019) Impaired autophagy in CD11b(+) dendritic cells expands CD4(+) regulatory T cells and limits atherosclerosis in mice. Circ Res 125(11):1019–1034. https://doi.org/10.1161/CIRCRESAHA.119.315248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Campbell LA, Rosenfeld ME (2015) Infection and atherosclerosis development. Arch Med Res 46(5):339–350. https://doi.org/10.1016/j.arcmed.2015.05.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cole JE, Park I, Ahern DJ, Kassiteridi C, Danso Abeam D, Goddard ME, Green P, Maffia P, Monaco C (2018) Immune cell census in murine atherosclerosis: cytometry by time of flight illuminates vascular myeloid cell diversity. Cardiovasc Res 114(10):1360–1371. https://doi.org/10.1093/cvr/cvy109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Winkels H, Ehinger E, Vassallo M, Buscher K, Dinh HQ, Kobiyama K, Hamers AAJ, Cochain C, Vafadarnejad E, Saliba AE, Zernecke A, Pramod AB, Ghosh AK, Anto Michel N, Hoppe N, Hilgendorf I, Zirlik A, Hedrick CC, Ley K, Wolf D (2018) Atlas of the immune cell repertoire in mouse atherosclerosis defined by single-cell RNA-sequencing and mass cytometry. Circ Res 122(12):1675–1688. https://doi.org/10.1161/CIRCRESAHA.117.312513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cochain C, Vafadarnejad E, Arampatzi P, Pelisek J, Winkels H, Ley K, Wolf D, Saliba AE, Zernecke A (2018) Single-cell RNA-seq reveals the transcriptional landscape and heterogeneity of aortic macrophages in murine atherosclerosis. Circ Res 122(12):1661–1674. https://doi.org/10.1161/CIRCRESAHA.117.312509

    Article  CAS  PubMed  Google Scholar 

  11. Kim K, Shim D, Lee JS, Zaitsev K, Williams JW, Kim KW, Jang MY, Seok Jang H, Yun TJ, Lee SH, Yoon WK, Prat A, Seidah NG, Choi J, Lee SP, Yoon SH, Nam JW, Seong JK, Oh GT, Randolph GJ, Artyomov MN, Cheong C, Choi JH (2018) Transcriptome analysis reveals nonfoamy rather than foamy plaque macrophages are proinflammatory in atherosclerotic murine models. Circ Res 123(10):1127–1142. https://doi.org/10.1161/CIRCRESAHA.118.312804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zernecke A, Winkels H, Cochain C, Williams JW, Wolf D, Soehnlein O, Robbins CS, Monaco C, Park I, McNamara CA, Binder CJ, Cybulsky MI, Scipione CA, Hedrick CC, Galkina EV, Kyaw T, Ghosheh Y, Dinh HQ, Ley K (2020) Meta-analysis of leukocyte diversity in atherosclerotic mouse aortas. Circ Res 127(3):402–426. https://doi.org/10.1161/CIRCRESAHA.120.316903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Butcher MJ, Galkina EV (2012) Phenotypic and functional heterogeneity of macrophages and dendritic cell subsets in the healthy and atherosclerosis-prone aorta. Front Physiol 3:44. https://doi.org/10.3389/fphys.2012.00044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gjurich BN, Taghavie-Moghadam PL, Galkina EV (2015) Flow cytometric analysis of immune cells within murine aorta. Methods Mol Biol 1339:161–175. https://doi.org/10.1007/978-1-4939-2929-0_11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. McArdle S, Buscher K, Ghosheh Y, Pramod AB, Miller J, Winkels H, Wolf D, Ley K (2019) Migratory and dancing macrophage subsets in atherosclerotic lesions. Circ Res 125(12):1038–1051. https://doi.org/10.1161/CIRCRESAHA.119.315175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hu D, Mohanta SK, Yin C, Peng L, Ma Z, Srikakulapu P, Grassia G, MacRitchie N, Dever G, Gordon P, Burton FL, Ialenti A, Sabir SR, McInnes IB, Brewer JM, Garside P, Weber C, Lehmann T, Teupser D, Habenicht L, Beer M, Grabner R, Maffia P, Weih F, Habenicht AJ (2015) Artery tertiary lymphoid organs control aorta immunity and protect against atherosclerosis via vascular smooth muscle cell lymphotoxin beta receptors. Immunity 42(6):1100–1115. https://doi.org/10.1016/j.immuni.2015.05.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Finck R, Simonds EF, Jager A, Krishnaswamy S, Sachs K, Fantl W, Pe'er D, Nolan GP, Bendall SC (2013) Normalization of mass cytometry data with bead standards. Cytometry A 83(5):483–494. https://doi.org/10.1002/cyto.a.22271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. el AD A, Davis KL, Tadmor MD, Simonds EF, Levine JH, Bendall SC, Shenfeld DK, Krishnaswamy S, Nolan GP, Pe'er D (2013) viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. Nat Biotechnol 31(6):545–552. https://doi.org/10.1038/nbt.2594

    Article  CAS  Google Scholar 

  19. Hartmann FJ, Simonds EF, Vivanco N, Bruce T, Borges L, Nolan GP, Spitzer MH, Bendall SC (2019) Scalable conjugation and characterization of immunoglobulins with stable mass isotope reporters for single-cell mass cytometry analysis. Methods Mol Biol 1989:55–81. https://doi.org/10.1007/978-1-4939-9454-0_5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lin JD, Nishi H, Poles J, Niu X, McCauley C, Rahman K, Brown EJ, Yeung ST, Vozhilla N, Weinstock A, Ramsey SA, Fisher EA, Loke P (2019) Single-cell analysis of fate-mapped macrophages reveals heterogeneity, including stem-like properties, during atherosclerosis progression and regression. JCI Insight 4(4). https://doi.org/10.1172/jci.insight.124574

  21. O'Flanagan CH, Campbell KR, Zhang AW, Kabeer F, Lim JLP, Biele J, Eirew P, Lai D, McPherson A, Kong E, Bates C, Borkowski K, Wiens M, Hewitson B, Hopkins J, Pham J, Ceglia N, Moore R, Mungall AJ, McAlpine JN, Team CIGC, Shah SP, Aparicio S (2019) Dissociation of solid tumor tissues with cold active protease for single-cell RNA-seq minimizes conserved collagenase-associated stress responses. Genome Biol 20(1):210. https://doi.org/10.1186/s13059-019-1830-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Adam M, Potter AS, Potter SS (2017) Psychrophilic proteases dramatically reduce single-cell RNA-seq artifacts: a molecular atlas of kidney development. Development 144(19):3625–3632. https://doi.org/10.1242/dev.151142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Randolph GJ, Inaba K, Robbiani DF, Steinman RM, Muller WA (1999) Differentiation of phagocytic monocytes into lymph node dendritic cells in vivo. Immunity 11(6):753–761. https://doi.org/10.1016/s1074-7613(00)80149-1

    Article  CAS  PubMed  Google Scholar 

  24. Szaloki G, Goda K (2015) Compensation in multicolor flow cytometry. Cytometry A 87(11):982–985. https://doi.org/10.1002/cyto.a.22736

    Article  PubMed  Google Scholar 

  25. Stadinski BD, Huseby ES (2020) How to prevent yourself from seeing double. Cytometry A 97(11):1102–1104. https://doi.org/10.1002/cyto.a.24045

    Article  PubMed  PubMed Central  Google Scholar 

  26. Burel JG, Pomaznoy M, Lindestam Arlehamn CS, Weiskopf D, da Silva AR, Jung Y, Babor M, Schulten V, Seumois G, Greenbaum JA, Premawansa S, Premawansa G, Wijewickrama A, Vidanagama D, Gunasena B, Tippalagama R, deSilva AD, Gilman RH, Saito M, Taplitz R, Ley K, Vijayanand P, Sette A, Peters B (2019) Circulating T cell-monocyte complexes are markers of immune perturbations. Elife 8:e46045. https://doi.org/10.7554/eLife.46045

    Article  PubMed  PubMed Central  Google Scholar 

  27. Gonder S, Fernandez Botana I, Wierz M, Pagano G, Gargiulo E, Cosma A, Moussay E, Paggetti J, Largeot A (2020) Method for the analysis of the tumor microenvironment by mass cytometry: application to chronic lymphocytic leukemia. Front Immunol 11:578176. https://doi.org/10.3389/fimmu.2020.578176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Leipold MD, Newell EW, Maecker HT (2015) Multiparameter phenotyping of human PBMCs using mass cytometry. Methods Mol Biol 1343:81–95. https://doi.org/10.1007/978-1-4939-2963-4_7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lai L, Ong R, Li J, Albani S (2015) A CD45-based barcoding approach to multiplex mass-cytometry (CyTOF). Cytometry A 87(4):369–374. https://doi.org/10.1002/cyto.a.22640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zivanovic N, Jacobs A, Bodenmiller B (2014) A practical guide to multiplexed mass cytometry. Curr Top Microbiol Immunol 377:95–109. https://doi.org/10.1007/82_2013_335

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants to M.O. from the American Heart Association (AHA18POST34060251), and from The Conrad Prebys Foundation Award. M.A.M acknowledges support from the American Cancer Society Postdoctoral Fellowship (PF-20-132-01-LIB) and the National Institute of Health (2T32AR064194). C. C. H. Acknowledges support from NIH grants U01 CA224766, R01 CA202987, R01 HL134236, and P01 HL136275. K. L. was supported by grants NIH HL 115232, 145241, and HL088093.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Catherine C. Hedrick or Klaus Ley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Orecchioni, M., Meyer, M.A., Hedrick, C.C., Ley, K. (2022). Flow Cytometry and Mass Cytometry for Measuring the Immune Cell Infiltrate in Atherosclerotic Arteries. In: Ramji, D. (eds) Atherosclerosis. Methods in Molecular Biology, vol 2419. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1924-7_47

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1924-7_47

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1923-0

  • Online ISBN: 978-1-0716-1924-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics