Skip to main content

Pig and Mouse Models of Hyperlipidemia and Atherosclerosis

  • Protocol
  • First Online:
Atherosclerosis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2419))

Abstract

Atherosclerosis is a chronic inflammatory disorder that is the underlying cause of most cardiovascular disease. Resident cells of the artery wall and cells of the immune system participate in atherogenesis. This process is influenced by plasma lipoproteins, genetics, and the hemodynamics of the blood flow in the artery. A variety of animal models have been used to study the pathophysiology and mechanisms that contribute to atherosclerotic lesion formation. No model is ideal as each has its own advantages and limitations with respect to manipulation of the atherogenic process and modeling human atherosclerosis and lipoprotein profile. In this chapter we will discuss pig and mouse models of experimental atherosclerosis. The similarity of pig lipoprotein metabolism and the pathophysiology of the lesions in these animals with that of humans is a major advantage. While a few genetically engineered pig models have been generated, the ease of genetic manipulation in mice and the relatively short time frame for the development of atherosclerosis has made them the most extensively used model. Newer approaches to induce hypercholesterolemia in mice have been developed that do not require germline modifications. These approaches will facilitate studies on atherogenic mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Getz GS, Reardon CA (2012) Animal models of atherosclerosis. Arterioscler Thromb Vasc Biol 32(5):1104–1115. https://doi.org/10.1161/atvbaha.111.237693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Janado M, Martin WG, Cook WH (1966) Separation and properties of pig-serum lipoproteins. Can J Biochem 44(8):1201–1209. https://doi.org/10.1139/o66-137

    Article  CAS  PubMed  Google Scholar 

  3. Terpstra AHM, Sanchez-Muniz FJ, West CE, Woodward CJH (1982) The density profile and cholesterol concentration of serum lipoproteins in domestic and laboratory animals. Comp Biochem Physiol B Comp Biochem 71(4):669–673. https://doi.org/10.1016/0305-0491(82)90479-5

    Article  CAS  Google Scholar 

  4. Padró T, Cubedo J, Camino S, Béjar MT, Ben-Aicha S, Mendieta G, Escolà-Gil JC, Escate R, Gutiérrez M, Casani L, Badimon L, Vilahur G (2017) Detrimental effect of hypercholesterolemia on high-density lipoprotein particle remodeling in pigs. J Am Coll Cardiol 70(2):165–178. https://doi.org/10.1016/j.jacc.2017.05.018

    Article  CAS  PubMed  Google Scholar 

  5. Puppione DL, Whitelegge JP, Yam LM, Schumaker VN (2005) Mass spectral analysis of pig (Sus scrofa) apo HDL: identification of pig apoA-II, a dimeric apolipoprotein. Comp Biochem Physiol B Biochem Mol Biol 141(1):89–94. https://doi.org/10.1016/j.cbpc.2005.01.014

    Article  CAS  PubMed  Google Scholar 

  6. Terpstra AH, Stucchi AF, Foxall TL, Shwaery GT, Vespa DB, Nicolosi RJ (1993) Unidirectional transfer in vivo of high-density lipoprotein cholesteryl esters to lower-density lipoproteins in the pig, an animal species without plasma cholesteryl ester transfer activity. Metabolism 42(12):1524–1530. https://doi.org/10.1016/0026-0495(93)90146-f

    Article  CAS  PubMed  Google Scholar 

  7. Mahley RW, Weisgraber KH, Innerarity T, Brewer HB Jr, Assmann G (1975) Swine lipoproteins and atherosclerosis. Changes in the plasma lipoproteins and apoproteins induced by cholesterol feeding. Biochemistry 14(13):2817–2823. https://doi.org/10.1021/bi00684a005

    Article  CAS  PubMed  Google Scholar 

  8. Pownall HJ, Jackson RL, Roth RI, Gotto AM, Patsch JR, Kummerow FA (1980) Influence of an atherogenic diet on the structure of swine low density lipoproteins. J Lipid Res 21(8):1108–1115

    Article  CAS  PubMed  Google Scholar 

  9. Rapacz J, Hasler-Rapacz J, Taylor KM, Checovich WJ, Attie AD (1986) Lipoprotein mutations in pigs are associated with elevated plasma cholesterol and atherosclerosis. Science 234(4783):1573–1577. https://doi.org/10.1126/science.3787263

    Article  CAS  PubMed  Google Scholar 

  10. Rapacz J Jr, Hasler-Rapacz J, Rapacz J, McConathy WJ (1989) Separation of swine plasma LDL from Lpb2/3 heterozygotes into two apoB allelic haplotypes, Lpb2 and Lpb3, with apoB epitope specific antibodies. J Lipid Res 30(2):199–206

    Article  CAS  PubMed  Google Scholar 

  11. Rapacz J, Hasler-Rapacz JO, Hu ZL, Rapacz JM, Vögeli P, Hojný J, Janik A (1994) Identification of new apolipoprotein B epitopes and haplotypes and their distribution in swine populations. Anim Genet 25(Suppl 1):51–57. https://doi.org/10.1111/j.1365-2052.1994.tb00403.x

    Article  CAS  PubMed  Google Scholar 

  12. Twisk J, Gillian-Daniel DL, Tebon A, Wang L, Barrett PH, Attie AD (2000) The role of the LDL receptor in apolipoprotein B secretion. J Clin Invest 105(4):521–532. https://doi.org/10.1172/jci8623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cooper ST, Aiello RJ, Checovich WJ, Attie AD (1992) Low density lipoprotein heterogeneity in spontaneously hypercholesterolemic pigs. Mol Cell Biochem 113(2):133–140. https://doi.org/10.1007/bf00231533

    Article  CAS  PubMed  Google Scholar 

  14. Lee DM, Mok T, Hasler-Rapacz J, Rapacz J (1990) Concentrations and compositions of plasma lipoprotein subfractions of Lpb5-Lpu1 homozygous and heterozygous swine with hypercholesterolemia. J Lipid Res 31(5):839–847

    Article  CAS  PubMed  Google Scholar 

  15. Checovich WJ, Fitch WL, Krauss RM, Smith MP, Rapacz J, Smith CL, Attie AD (1988) Defective catabolism and abnormal composition of low-density lipoproteins from mutant pigs with hypercholesterolemia. Biochemistry 27(6):1934–1941. https://doi.org/10.1021/bi00406a020

    Article  CAS  PubMed  Google Scholar 

  16. Grunwald KA, Schueler K, Uelmen PJ, Lipton BA, Kaiser M, Buhman K, Attie AD (1999) Identification of a novel Arg-->Cys mutation in the LDL receptor that contributes to spontaneous hypercholesterolemia in pigs. J Lipid Res 40(3):475–485

    Article  CAS  PubMed  Google Scholar 

  17. Hoogendoorn A, den Hoedt S, Hartman EMJ, Krabbendam-Peters I, Te Lintel HM, van der Zee L, van Gaalen K, Witberg KT, Dorst K, Ligthart JMR, Drouet L, Van der Heiden K, van Lennep JR, van der Steen AFW, Duncker DJ, Mulder MT, Wentzel JJ (2019) Variation in coronary atherosclerosis severity related to a distinct LDL (low-density lipoprotein) profile: findings from a familial hypercholesterolemia pig model. Arterioscler Thromb Vasc Biol 39(11):2338–2352. https://doi.org/10.1161/atvbaha.119.313246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hasler-Rapacz J, Prescott MF, Von Linden-Reed J, Rapacz JM Jr, Hu Z, Rapacz J (1995) Elevated concentrations of plasma lipids and apolipoproteins B, C-III, and E are associated with the progression of coronary artery disease in familial hypercholesterolemic swine. Arterioscler Thromb Vasc Biol 15(5):583–592. https://doi.org/10.1161/01.atv.15.5.583

    Article  CAS  PubMed  Google Scholar 

  19. Gerrity RG, Naito HK, Richardson M, Schwartz CJ (1979) Dietary induced atherogenesis in swine. Morphology of the intima in prelesion stages. Am J Pathol 95(3):775–792

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Feldman DL, Hoff HF, Gerrity RG (1984) Immunohistochemical localization of apoprotein B in aortas from hyperlipemic swine. Preferential accumulation in lesion-prone areas. Arch Pathol Lab Med 108(10):817–822

    CAS  PubMed  Google Scholar 

  21. Gerrity RG, Richardson M, Somer JB, Bell FP, Schwartz CJ (1977) Endothelial cell morphology in areas of in vivo Evans blue uptake in the aorta of young pigs. II Ultrastructure of the intima in areas of differing permeability to proteins. Am J Pathol 89(2):313–334

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Gerrity RG, Natarajan R, Nadler JL, Kimsey T (2001) Diabetes-induced accelerated atherosclerosis in swine. Diabetes 50(7):1654–1665. https://doi.org/10.2337/diabetes.50.7.1654

    Article  CAS  PubMed  Google Scholar 

  23. Koskinas KC, Sukhova GK, Baker AB, Papafaklis MI, Chatzizisis YS, Coskun AU, Quillard T, Jonas M, Maynard C, Antoniadis AP, Shi GP, Libby P, Edelman ER, Feldman CL, Stone PH (2013) Thin-capped atheromata with reduced collagen content in pigs develop in coronary arterial regions exposed to persistently low endothelial shear stress. Arterioscler Thromb Vasc Biol 33(7):1494–1504. https://doi.org/10.1161/atvbaha.112.300827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Thim T, Hagensen MK, Hørlyck A, Kim WY, Niemann AK, Thrysøe SA, Drouet L, Paaske WP, Bøtker HE, Falk E (2012) Wall shear stress and local plaque development in stenosed carotid arteries of hypercholesterolemic minipigs. J Cardiovasc Dis Res 3(2):76–83. https://doi.org/10.4103/0975-3583.95358

    Article  PubMed  PubMed Central  Google Scholar 

  25. Gerrity RG (1981) The role of the monocyte in atherogenesis: I. Transition of blood-borne monocytes into foam cells in fatty lesions. Am J Pathol 103(2):181–190

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Holvoet P, Theilmeier G, Shivalkar B, Flameng W, Collen D (1998) LDL hypercholesterolemia is associated with accumulation of oxidized LDL, atherosclerotic plaque growth, and compensatory vessel enlargement in coronary arteries of miniature pigs. Arterioscler Thromb Vasc Biol 18(3):415–422. https://doi.org/10.1161/01.ATV.18.3.415

    Article  CAS  PubMed  Google Scholar 

  27. Glagov S, Weisenberg E, Zarins CK, Stankunavicius R, Kolettis GJ (1987) Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med 316(22):1371–1375. https://doi.org/10.1056/nejm198705283162204

    Article  CAS  PubMed  Google Scholar 

  28. Mohler ER 3rd, Sarov-Blat L, Shi Y, Hamamdzic D, Zalewski A, Macphee C, Llano R, Pelchovitz D, Mainigi SK, Osman H, Hallman T, Steplewski K, Gertz Z, Lu MM, Wilensky RL (2008) Site-specific atherogenic gene expression correlates with subsequent variable lesion development in coronary and peripheral vasculature. Arterioscler Thromb Vasc Biol 28(5):850–855. https://doi.org/10.1161/atvbaha.107.154534

    Article  CAS  PubMed  Google Scholar 

  29. Neeb ZP, Edwards JM, Alloosh M, Long X, Mokelke EA, Sturek M (2010) Metabolic syndrome and coronary artery disease in Ossabaw compared with Yucatan swine. Comp Med 60(4):300–315

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Dyson MC, Alloosh M, Vuchetich JP, Mokelke EA, Sturek M (2006) Components of metabolic syndrome and coronary artery disease in female Ossabaw swine fed excess atherogenic diet. Comp Med 56(1):35–45

    CAS  PubMed  Google Scholar 

  31. Choy JS, Luo T, Huo Y, Wischgoll T, Schultz K, Teague SD, Sturek M, Kassab GS (2015) Compensatory enlargement of ossabaw miniature swine coronary arteries in diffuse atherosclerosis. Int J Cardiol Heart Vasc 6:4–11. https://doi.org/10.1016/j.ijcha.2014.11.003

    Article  PubMed  Google Scholar 

  32. Jacobsson L (1986) Comparison of experimental hypercholesterolemia and atherosclerosis in Göttingen mini-pigs and Swedish domestic swine. Atherosclerosis 59(2):205–213. https://doi.org/10.1016/0021-9150(86)90049-3

    Article  CAS  PubMed  Google Scholar 

  33. Jacobsson L (1989) Comparison of experimental hypercholesterolemia and atherosclerosis in male and female mini-pigs of the Göttingen strain. Artery 16(2):105–117

    CAS  PubMed  Google Scholar 

  34. Hamamdzic D, Wilensky RL (2013) Porcine models of accelerated coronary atherosclerosis: role of diabetes mellitus and hypercholesterolemia. J Diabetes Res 2013:761415. https://doi.org/10.1155/2013/761415

    Article  PubMed  PubMed Central  Google Scholar 

  35. Prescott MF, McBride CH, Hasler-Rapacz J, Von Linden J, Rapacz J (1991) Development of complex atherosclerotic lesions in pigs with inherited hyper-LDL cholesterolemia bearing mutant alleles for apolipoprotein B. Am J Pathol 139(1):139–147

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Schulz R, Schlüter KD, Laufs U (2015) Molecular and cellular function of the proprotein convertase subtilisin/kexin type 9 (PCSK9). Basic Res Cardiol 110(2):4. https://doi.org/10.1007/s00395-015-0463-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Davignon J, Dubuc G, Seidah NG (2010) The influence of PCSK9 polymorphisms on serum low-density lipoprotein cholesterol and risk of atherosclerosis. Curr Atheroscler Rep 12(5):308–315. https://doi.org/10.1007/s11883-010-0123-6

    Article  CAS  PubMed  Google Scholar 

  38. Al-Mashhadi RH, Sørensen CB, Kragh PM, Christoffersen C, Mortensen MB, Tolbod LP, Thim T, Du Y, Li J, Liu Y, Moldt B, Schmidt M, Vajta G, Larsen T, Purup S, Bolund L, Nielsen LB, Callesen H, Falk E, Mikkelsen JG, Bentzon JF (2013) Familial hypercholesterolemia and atherosclerosis in cloned minipigs created by DNA transposition of a human PCSK9 gain-of-function mutant. Sci Transl Med 5(166):166ra161. https://doi.org/10.1126/scitranslmed.3004853

    Article  CAS  Google Scholar 

  39. Shim J, Al-Mashhadi RH, Sørensen CB, Bentzon JF (2016) Large animal models of atherosclerosis–new tools for persistent problems in cardiovascular medicine. J Pathol 238(2):257–266. https://doi.org/10.1002/path.4646

    Article  CAS  PubMed  Google Scholar 

  40. Davis BT, Wang XJ, Rohret JA, Struzynski JT, Merricks EP, Bellinger DA, Rohret FA, Nichols TC, Rogers CS (2014) Targeted disruption of LDLR causes hypercholesterolemia and atherosclerosis in Yucatan miniature pigs. PLoS One 9(4):e93457. https://doi.org/10.1371/journal.pone.0093457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Shim J, Poulsen CB, Hagensen MK, Larsen T, Heegaard PMH, Christoffersen C, Bolund L, Schmidt M, Liu Y, Li J, Li R, Callesen H, Bentzon JF, Sørensen CB (2017) Apolipoprotein E deficiency increases remnant lipoproteins and accelerates progressive atherosclerosis, but not xanthoma formation, in gene-modified minipigs. JACC Basic Transl Sci 2(5):591–600. https://doi.org/10.1016/j.jacbts.2017.06.004

    Article  PubMed  PubMed Central  Google Scholar 

  42. Fang B, Ren X, Wang Y, Li Z, Zhao L, Zhang M, Li C, Zhang Z, Chen L, Li X, Liu J, Xiong Q, Zhang L, Jin Y, Liu X, Li L, Wei H, Yang H, Li R, Dai Y (2018) Apolipoprotein E deficiency accelerates atherosclerosis development in miniature pigs. Dis Model Mech 11(10). https://doi.org/10.1242/dmm.036632

  43. Kobari Y, Koto M, Tanigawa M (1991) Regression of diet-induced atherosclerosis in Göttingen miniature swine. Lab Anim 25(2):110–116. https://doi.org/10.1258/002367791781082478

    Article  CAS  PubMed  Google Scholar 

  44. Barbeau ML, Klemp KF, Guyton JR, Rogers KA (1997) Dietary fish oil. Influence on lesion regression in the porcine model of atherosclerosis. Arterioscler Thromb Vasc Biol 17(4):688–694. https://doi.org/10.1161/01.atv.17.4.688

    Article  CAS  PubMed  Google Scholar 

  45. Rosenson RS, Brewer HB Jr, Ansell BJ, Barter P, Chapman MJ, Heinecke JW, Kontush A, Tall AR, Webb NR (2016) Dysfunctional HDL and atherosclerotic cardiovascular disease. Nat Rev Cardiol 13(1):48–60. https://doi.org/10.1038/nrcardio.2015.124

    Article  CAS  PubMed  Google Scholar 

  46. Schultz JR, Verstuyft JG, Gong EL, Nichols AV, Rubin EM (1993) Protein composition determines the anti-atherogenic properties of HDL in transgenic mice. Nature 365(6448):762–764. https://doi.org/10.1038/365762a0

    Article  CAS  PubMed  Google Scholar 

  47. Reschly EJ, Sorci-Thomas MG, Davidson WS, Meredith SC, Reardon CA, Getz GS (2002) Apolipoprotein A-I alpha -helices 7 and 8 modulate high density lipoprotein subclass distribution. J Biol Chem 277(12):9645–9654. https://doi.org/10.1074/jbc.M107883200

    Article  CAS  PubMed  Google Scholar 

  48. Getz GS, Reardon CA (2011) Apolipoprotein A-I and A-I mimetic peptides: a role in atherosclerosis. J Inflamm Res 4:83–92. https://doi.org/10.2147/jir.S12983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sontag TJ, Carnemolla R, Vaisar T, Reardon CA, Getz GS (2012) Naturally occurring variant of mouse apolipoprotein A-I alters the lipid and HDL association properties of the protein. J Lipid Res 53(5):951–963. https://doi.org/10.1194/jlr.M021154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Vaisar T, Pennathur S, Green PS, Gharib SA, Hoofnagle AN, Cheung MC, Byun J, Vuletic S, Kassim S, Singh P, Chea H, Knopp RH, Brunzell J, Geary R, Chait A, Zhao XQ, Elkon K, Marcovina S, Ridker P, Oram JF, Heinecke JW (2007) Shotgun proteomics implicates protease inhibition and complement activation in the antiinflammatory properties of HDL. J Clin Invest 117(3):746–756. https://doi.org/10.1172/jci26206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Pamir N, Pan C, Plubell DL, Hutchins PM, Tang C, Wimberger J, Irwin A, Vallim TQA, Heinecke JW, Lusis AJ (2019) Genetic control of the mouse HDL proteome defines HDL traits, function, and heterogeneity. J Lipid Res 60(3):594–608. https://doi.org/10.1194/jlr.M090555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mahley RW, Weisgraber KH, Huang Y (2009) Apolipoprotein E: structure determines function, from atherosclerosis to Alzheimer’s disease to AIDS. J Lipid Res 50 Suppl(Suppl):S183–S188. https://doi.org/10.1194/jlr.R800069-JLR200

    Article  CAS  PubMed  Google Scholar 

  53. Davidson NO, Shelness GS (2000) Apolipoprotein B: mRNA editing, lipoprotein assembly, and presecretory degradation. Annu Rev Nutr 20:169–193. https://doi.org/10.1146/annurev.nutr.20.1.169

    Article  CAS  PubMed  Google Scholar 

  54. Paigen B, Ishida BY, Verstuyft J, Winters RB, Albee D (1990) Atherosclerosis susceptibility differences among progenitors of recombinant inbred strains of mice. Arteriosclerosis 10(2):316–323. https://doi.org/10.1161/01.atv.10.2.316

    Article  CAS  PubMed  Google Scholar 

  55. Hansson GK (2014) A journey in science: medical scientist in translation. Mol Med 20(1):381–389. https://doi.org/10.2119/molmed.2014.00092

    Article  PubMed  PubMed Central  Google Scholar 

  56. Plump AS, Smith JD, Hayek T, Aalto-Setälä K, Walsh A, Verstuyft JG, Rubin EM, Breslow JL (1992) Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells. Cell 71(2):343–353. https://doi.org/10.1016/0092-8674(92)90362-g

    Article  CAS  PubMed  Google Scholar 

  57. Zhang SH, Reddick RL, Piedrahita JA, Maeda N (1992) Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Science 258(5081):468–471. https://doi.org/10.1126/science.1411543

    Article  CAS  PubMed  Google Scholar 

  58. Ishibashi S, Brown MS, Goldstein JL, Gerard RD, Hammer RE, Herz J (1993) Hypercholesterolemia in low density lipoprotein receptor knockout mice and its reversal by adenovirus-mediated gene delivery. J Clin Invest 92(2):883–893. https://doi.org/10.1172/jci116663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Getz GS, Reardon CA (2016) Do the Apoe−/− and Ldlr−/− mice yield the same insight on atherogenesis? Arterioscler Thromb Vasc Biol 36(9):1734–1741. https://doi.org/10.1161/atvbaha.116.306874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Paigen B, Morrow A, Holmes PA, Mitchell D, Williams RA (1987) Quantitative assessment of atherosclerotic lesions in mice. Atherosclerosis 68(3):231–240. https://doi.org/10.1016/0021-9150(87)90202-4

    Article  CAS  PubMed  Google Scholar 

  61. Curtiss LK, Black AS, Bonnet DJ, Tobias PS (2012) Atherosclerosis induced by endogenous and exogenous toll-like receptor (TLR)1 or TLR6 agonists. J Lipid Res 53(10):2126–2132. https://doi.org/10.1194/jlr.M028431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Teupser D, Persky AD, Breslow JL (2003) Induction of atherosclerosis by low-fat, semisynthetic diets in LDL receptor-deficient C57BL/6J and FVB/NJ mice: comparison of lesions of the aortic root, brachiocephalic artery, and whole aorta (en face measurement). Arterioscler Thromb Vasc Biol 23(10):1907–1913. https://doi.org/10.1161/01.Atv.0000090126.34881.B1

    Article  CAS  PubMed  Google Scholar 

  63. Hartvigsen K, Binder CJ, Hansen LF, Rafia A, Juliano J, Hörkkö S, Steinberg D, Palinski W, Witztum JL, Li AC (2007) A diet-induced hypercholesterolemic murine model to study atherogenesis without obesity and metabolic syndrome. Arterioscler Thromb Vasc Biol 27(4):878–885. https://doi.org/10.1161/01.Atv.0000258790.35810.02

    Article  CAS  PubMed  Google Scholar 

  64. Powell-Braxton L, Véniant M, Latvala RD, Hirano KI, Won WB, Ross J, Dybdal N, Zlot CH, Young SG, Davidson NO (1998) A mouse model of human familial hypercholesterolemia: markedly elevated low density lipoprotein cholesterol levels and severe atherosclerosis on a low-fat chow diet. Nat Med 4(8):934–938. https://doi.org/10.1038/nm0898-934

    Article  CAS  PubMed  Google Scholar 

  65. Véniant MM, Sullivan MA, Kim SK, Ambroziak P, Chu A, Wison MD, Hellerstein MK, Rudel LL, Walzem RL, Young SG (2000) Defining the atherogenicity of large and small lipoproteins containing apolipoprotein B100. J Clin Invest 106(12):1501–1510. https://doi.org/10.1172/jci10695

    Article  PubMed  PubMed Central  Google Scholar 

  66. Véniant MM, Withycombe S, Young SG (2001) Lipoprotein size and atherosclerosis susceptibility in Apoe(−/−) and Ldlr(−/−) mice. Arterioscler Thromb Vasc Biol 21(10):1567–1570. https://doi.org/10.1161/hq1001.097780

    Article  PubMed  Google Scholar 

  67. Borén J, Olin K, Lee I, Chait A, Wight TN, Innerarity TL (1998) Identification of the principal proteoglycan-binding site in LDL. A single-point mutation in apo-B100 severely affects proteoglycan interaction without affecting LDL receptor binding. J Clin Invest 101(12):2658–2664. https://doi.org/10.1172/jci2265

    Article  PubMed  PubMed Central  Google Scholar 

  68. Flood C, Gustafsson M, Richardson PE, Harvey SC, Segrest JP, Borén J (2002) Identification of the proteoglycan binding site in apolipoprotein B48. J Biol Chem 277(35):32228–32233. https://doi.org/10.1074/jbc.M204053200

    Article  CAS  PubMed  Google Scholar 

  69. van Vlijmen BJ, van den Maagdenberg AM, Gijbels MJ, van der Boom H, HogenEsch H, Frants RR, Hofker MH, Havekes LM (1994) Diet-induced hyperlipoproteinemia and atherosclerosis in apolipoprotein E3-Leiden transgenic mice. J Clin Invest 93(4):1403–1410. https://doi.org/10.1172/jci117117

    Article  PubMed  PubMed Central  Google Scholar 

  70. Hopkins PN (2013) Molecular biology of atherosclerosis. Physiol Rev 93(3):1317–1542. https://doi.org/10.1152/physrev.00004.2012

    Article  CAS  PubMed  Google Scholar 

  71. Stylianou IM, Bauer RC, Reilly MP, Rader DJ (2012) Genetic basis of atherosclerosis: insights from mice and humans. Circ Res 110(2):337–355. https://doi.org/10.1161/circresaha.110.230854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. von Scheidt M, Zhao Y, Kurt Z, Pan C, Zeng L, Yang X, Schunkert H, Lusis AJ (2017) Applications and limitations of mouse models for understanding human atherosclerosis. Cell Metab 25(2):248–261. https://doi.org/10.1016/j.cmet.2016.11.001

    Article  CAS  Google Scholar 

  73. Nakashima Y, Plump AS, Raines EW, Breslow JL, Ross R (1994) ApoE-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree. Arterioscler Thromb 14(1):133–140. https://doi.org/10.1161/01.atv.14.1.133

    Article  CAS  PubMed  Google Scholar 

  74. Tomita H, Zhilicheva S, Kim S, Maeda N (2010) Aortic arch curvature and atherosclerosis have overlapping quantitative trait loci in a cross between 129S6/SvEvTac and C57BL/6J apolipoprotein E-null mice. Circ Res 106(6):1052–1060. https://doi.org/10.1161/circresaha.109.207175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kayashima Y, Makhanova NA, Matsuki K, Tomita H, Bennett BJ, Maeda N (2015) Identification of aortic arch-specific quantitative trait loci for atherosclerosis by an intercross of DBA/2J and 129S6 apolipoprotein E-deficient mice. PLoS One 10(2):e0117478. https://doi.org/10.1371/journal.pone.0117478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Teupser D, Pavlides S, Tan M, Gutierrez-Ramos JC, Kolbeck R, Breslow JL (2004) Major reduction of atherosclerosis in fractalkine (CX3CL1)-deficient mice is at the brachiocephalic artery, not the aortic root. Proc Natl Acad Sci U S A 101(51):17795–17800. https://doi.org/10.1073/pnas.0408096101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Szeto FL, Reardon CA, Yoon D, Wang Y, Wong KE, Chen Y, Kong J, Liu SQ, Thadhani R, Getz GS, Li YC (2012) Vitamin D receptor signaling inhibits atherosclerosis in mice. Mol Endocrinol 26(7):1091–1101. https://doi.org/10.1210/me.2011-1329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lessner SM, Prado HL, Waller EK, Galis ZS (2002) Atherosclerotic lesions grow through recruitment and proliferation of circulating monocytes in a murine model. Am J Pathol 160(6):2145–2155. https://doi.org/10.1016/s0002-9440(10)61163-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. de Villiers WJ, Smith JD, Miyata M, Dansky HM, Darley E, Gordon S (1998) Macrophage phenotype in mice deficient in both macrophage-colony-stimulating factor (op) and apolipoprotein E. Arterioscler Thromb Vasc Biol 18(4):631–640. https://doi.org/10.1161/01.atv.18.4.631

    Article  PubMed  Google Scholar 

  80. Swirski FK, Libby P, Aikawa E, Alcaide P, Luscinskas FW, Weissleder R, Pittet MJ (2007) Ly-6Chi monocytes dominate hypercholesterolemia-associated monocytosis and give rise to macrophages in atheromata. J Clin Invest 117(1):195–205. https://doi.org/10.1172/jci29950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Combadière C, Potteaux S, Rodero M, Simon T, Pezard A, Esposito B, Merval R, Proudfoot A, Tedgui A, Mallat Z (2008) Combined inhibition of CCL2, CX3CR1, and CCR5 abrogates Ly6C(hi) and Ly6C(lo) monocytosis and almost abolishes atherosclerosis in hypercholesterolemic mice. Circulation 117(13):1649–1657. https://doi.org/10.1161/circulationaha.107.745091

    Article  PubMed  Google Scholar 

  82. Jongstra-Bilen J, Haidari M, Zhu SN, Chen M, Guha D, Cybulsky MI (2006) Low-grade chronic inflammation in regions of the normal mouse arterial intima predisposed to atherosclerosis. J Exp Med 203(9):2073–2083. https://doi.org/10.1084/jem.20060245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Getz GS, Reardon CA (2018) T Cellsin atherosclerosis in Ldlr−/− and Apoe−/− mice. J Immunol Sci 2(3):69–76. https://doi.org/10.29245/2578-3009/2018/3.1144

    Article  PubMed  PubMed Central  Google Scholar 

  84. Reardon CA, Blachowicz L, White T, Cabana V, Wang Y, Lukens J, Bluestone J, Getz GS (2001) Effect of immune deficiency on lipoproteins and atherosclerosis in male apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 21(6):1011–1016. https://doi.org/10.1161/01.atv.21.6.1011

    Article  CAS  PubMed  Google Scholar 

  85. Dansky HM, Charlton SA, Harper MM, Smith JD (1997) T and B lymphocytes play a minor role in atherosclerotic plaque formation in the apolipoprotein E-deficient mouse. Proc Natl Acad Sci U S A 94(9):4642–4646. https://doi.org/10.1073/pnas.94.9.4642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Daugherty A, Puré E, Delfel-Butteiger D, Chen S, Leferovich J, Roselaar SE, Rader DJ (1997) The effects of total lymphocyte deficiency on the extent of atherosclerosis in apolipoprotein E−/− mice. J Clin Invest 100(6):1575–1580. https://doi.org/10.1172/jci119681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Roselaar SE, Kakkanathu PX, Daugherty A (1996) Lymphocyte populations in atherosclerotic lesions of apoE −/− and LDL receptor −/− mice. Decreasing density with disease progression. Arterioscler Thromb Vasc Biol 16(8):1013–1018. https://doi.org/10.1161/01.atv.16.8.1013

    Article  CAS  PubMed  Google Scholar 

  88. Galkina E, Kadl A, Sanders J, Varughese D, Sarembock IJ, Ley K (2006) Lymphocyte recruitment into the aortic wall before and during development of atherosclerosis is partially L-selectin dependent. J Exp Med 203(5):1273–1282. https://doi.org/10.1084/jem.20052205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Gencer S, Evans BR, van der Vorst EPC, Döring Y, Weber C (2021) Inflammatory chemokines in atherosclerosis. Cells 10(2):226. https://doi.org/10.3390/cells10020226

  90. Ley K, Gerdes N, Winkels H (2017) ATVB distinguished scientist award: how costimulatory and coinhibitory pathways shape atherosclerosis. Arterioscler Thromb Vasc Biol 37(5):764–777. https://doi.org/10.1161/atvbaha.117.308611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Getz GS, Reardon CA (2017) Natural killer T cells in atherosclerosis. Nat Rev Cardiol 14(5):304–314. https://doi.org/10.1038/nrcardio.2017.2

    Article  CAS  PubMed  Google Scholar 

  92. Pendse AA, Arbones-Mainar JM, Johnson LA, Altenburg MK, Maeda N (2009) Apolipoprotein E knock-out and knock-in mice: atherosclerosis, metabolic syndrome, and beyond. J Lipid Res 50 Suppl(Suppl):S178–S182. https://doi.org/10.1194/jlr.R800070-JLR200

    Article  CAS  PubMed  Google Scholar 

  93. Altenburg M, Arbones-Mainar J, Johnson L, Wilder J, Maeda N (2008) Human LDL receptor enhances sequestration of ApoE4 and VLDL remnants on the surface of hepatocytes but not their internalization in mice. Arterioscler Thromb Vasc Biol 28(6):1104–1110. https://doi.org/10.1161/atvbaha.108.164863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Sullivan PM, Mezdour H, Quarfordt SH, Maeda N (1998) Type III hyperlipoproteinemia and spontaneous atherosclerosis in mice resulting from gene replacement of mouse Apoe with human Apoe*2. J Clin Invest 102(1):130–135. https://doi.org/10.1172/jci2673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Knouff C, Hinsdale ME, Mezdour H, Altenburg MK, Watanabe M, Quarfordt SH, Sullivan PM, Maeda N (1999) Apo E structure determines VLDL clearance and atherosclerosis risk in mice. J Clin Invest 103(11):1579–1586. https://doi.org/10.1172/jci6172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Li H, Dhanasekaran P, Alexander ET, Rader DJ, Phillips MC, Lund-Katz S (2013) Molecular mechanisms responsible for the differential effects of apoE3 and apoE4 on plasma lipoprotein-cholesterol levels. Arterioscler Thromb Vasc Biol 33(4):687–693. https://doi.org/10.1161/atvbaha.112.301193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Raffai RL, Weisgraber KH (2002) Hypomorphic apolipoprotein E mice: a new model of conditional gene repair to examine apolipoprotein E-mediated metabolism. J Biol Chem 277(13):11064–11068. https://doi.org/10.1074/jbc.M111222200

    Article  CAS  PubMed  Google Scholar 

  98. Getz GS, Reardon CA (2009) Apoprotein E as a lipid transport and signaling protein in the blood, liver, and artery wall. J Lipid Res 50 Suppl(Suppl):S156–S161. https://doi.org/10.1194/jlr.R800058-JLR200

    Article  CAS  PubMed  Google Scholar 

  99. Linton MF, Atkinson JB, Fazio S (1995) Prevention of atherosclerosis in apolipoprotein E-deficient mice by bone marrow transplantation. Science 267(5200):1034–1037. https://doi.org/10.1126/science.7863332

    Article  CAS  PubMed  Google Scholar 

  100. Boisvert WA, Spangenberg J, Curtiss LK (1995) Treatment of severe hypercholesterolemia in apolipoprotein E-deficient mice by bone marrow transplantation. J Clin Invest 96(2):1118–1124. https://doi.org/10.1172/jci118098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kashyap VS, Santamarina-Fojo S, Brown DR, Parrott CL, Applebaum-Bowden D, Meyn S, Talley G, Paigen B, Maeda N, Brewer HB Jr (1995) Apolipoprotein E deficiency in mice: gene replacement and prevention of atherosclerosis using adenovirus vectors. J Clin Invest 96(3):1612–1620. https://doi.org/10.1172/jci118200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Thorngate FE, Rudel LL, Walzem RL, Williams DL (2000) Low levels of extrahepatic nonmacrophage ApoE inhibit atherosclerosis without correcting hypercholesterolemia in ApoE-deficient mice. Arterioscler Thromb Vasc Biol 20(8):1939–1945. https://doi.org/10.1161/01.atv.20.8.1939

    Article  CAS  PubMed  Google Scholar 

  103. Huang ZH, Reardon CA, Subbaiah PV, Getz GS, Mazzone T (2013) ApoE derived from adipose tissue does not suppress atherosclerosis or correct hyperlipidemia in apoE knockout mice. J Lipid Res 54(1):202–213. https://doi.org/10.1194/jlr.M031906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Fazio S, Babaev VR, Murray AB, Hasty AH, Carter KJ, Gleaves LA, Atkinson JB, Linton MF (1997) Increased atherosclerosis in mice reconstituted with apolipoprotein E null macrophages. Proc Natl Acad Sci U S A 94(9):4647–4652. https://doi.org/10.1073/pnas.94.9.4647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Tall AR, Yvan-Charvet L, Westerterp M, Murphy AJ (2012) Cholesterol efflux: a novel regulator of myelopoiesis and atherogenesis. Arterioscler Thromb Vasc Biol 32(11):2547–2552. https://doi.org/10.1161/atvbaha.112.300134

    Article  CAS  PubMed  Google Scholar 

  106. Tall AR, Yvan-Charvet L (2015) Cholesterol, inflammation and innate immunity. Nat Rev Immunol 15(2):104–116. https://doi.org/10.1038/nri3793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Yvan-Charvet L, Pagler T, Gautier EL, Avagyan S, Siry RL, Han S, Welch CL, Wang N, Randolph GJ, Snoeck HW, Tall AR (2010) ATP-binding cassette transporters and HDL suppress hematopoietic stem cell proliferation. Science 328(5986):1689–1693. https://doi.org/10.1126/science.1189731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Herbert B, Patel D, Waddington SN, Eden ER, McAleenan A, Sun XM, Soutar AK (2010) Increased secretion of lipoproteins in transgenic mice expressing human D374Y PCSK9 under physiological genetic control. Arterioscler Thromb Vasc Biol 30(7):1333–1339. https://doi.org/10.1161/atvbaha.110.204040

    Article  CAS  PubMed  Google Scholar 

  109. Roche-Molina M, Sanz-Rosa D, Cruz FM, García-Prieto J, López S, Abia R, Muriana FJ, Fuster V, Ibáñez B, Bernal JA (2015) Induction of sustained hypercholesterolemia by single adeno-associated virus-mediated gene transfer of mutant hPCSK9. Arterioscler Thromb Vasc Biol 35(1):50–59. https://doi.org/10.1161/atvbaha.114.303617

    Article  CAS  PubMed  Google Scholar 

  110. Bjørklund MM, Hollensen AK, Hagensen MK, Dagnaes-Hansen F, Christoffersen C, Mikkelsen JG, Bentzon JF (2014) Induction of atherosclerosis in mice and hamsters without germline genetic engineering. Circ Res 114(11):1684–1689. https://doi.org/10.1161/circresaha.114.302937

    Article  PubMed  Google Scholar 

  111. Jarrett KE, Lee C, De Giorgi M, Hurley A, Gillard BK, Doerfler AM, Li A, Pownall HJ, Bao G, Lagor WR (2018) Somatic editing of Ldlr with adeno-associated viral-CRISPR is an efficient tool for atherosclerosis research. Arterioscler Thromb Vasc Biol 38(9):1997–2006. https://doi.org/10.1161/atvbaha.118.311221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Vozenilek AE, Blackburn CMR, Schilke RM, Chandran S, Castore R, Klein RL, Woolard MD (2018) AAV8-mediated overexpression of mPCSK9 in liver differs between male and female mice. Atherosclerosis 278:66–72. https://doi.org/10.1016/j.atherosclerosis.2018.09.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Basu D, Hu Y, Huggins LA, Mullick AE, Graham MJ, Wietecha T, Barnhart S, Mogul A, Pfeiffer K, Zirlik A, Fisher EA, Bornfeldt KE, Willecke F, Goldberg IJ (2018) Novel reversible model of atherosclerosis and regression using oligonucleotide regulation of the LDL receptor. Circ Res 122(4):560–567. https://doi.org/10.1161/circresaha.117.311361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Caligiuri G, Levy B, Pernow J, Thorén P, Hansson GK (1999) Myocardial infarction mediated by endothelin receptor signaling in hypercholesterolemic mice. Proc Natl Acad Sci U S A 96(12):6920–6924. https://doi.org/10.1073/pnas.96.12.6920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Cozen AE, Moriwaki H, Kremen M, DeYoung MB, Dichek HL, Slezicki KI, Young SG, Véniant M, Dichek DA (2004) Macrophage-targeted overexpression of urokinase causes accelerated atherosclerosis, coronary artery occlusions, and premature death. Circulation 109(17):2129–2135. https://doi.org/10.1161/01.Cir.0000127369.24127.03

    Article  CAS  PubMed  Google Scholar 

  116. Braun A, Trigatti BL, Post MJ, Sato K, Simons M, Edelberg JM, Rosenberg RD, Schrenzel M, Krieger M (2002) Loss of SR-BI expression leads to the early onset of occlusive atherosclerotic coronary artery disease, spontaneous myocardial infarctions, severe cardiac dysfunction, and premature death in apolipoprotein E-deficient mice. Circ Res 90(3):270–276. https://doi.org/10.1161/hh0302.104462

    Article  CAS  PubMed  Google Scholar 

  117. Braun A, Zhang S, Miettinen HE, Ebrahim S, Holm TM, Vasile E, Post MJ, Yoerger DM, Picard MH, Krieger JL, Andrews NC, Simons M, Krieger M (2003) Probucol prevents early coronary heart disease and death in the high-density lipoprotein receptor SR-BI/apolipoprotein E double knockout mouse. Proc Natl Acad Sci U S A 100(12):7283–7288. https://doi.org/10.1073/pnas.1237725100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Wang G, Kim RY, Imhof I, Honbo N, Luk FS, Li K, Kumar N, Zhu BQ, Eberlé D, Ching D, Karliner JS, Raffai RL (2014) The immunosuppressant FTY720 prolongs survival in a mouse model of diet-induced coronary atherosclerosis and myocardial infarction. J Cardiovasc Pharmacol 63(2):132–143. https://doi.org/10.1097/fjc.0000000000000031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Fuller M, Dadoo O, Serkis V, Abutouk D, MacDonald M, Dhingani N, Macri J, Igdoura SA, Trigatti BL (2014) The effects of diet on occlusive coronary artery atherosclerosis and myocardial infarction in scavenger receptor class B, type 1/low-density lipoprotein receptor double knockout mice. Arterioscler Thromb Vasc Biol 34(11):2394–2403. https://doi.org/10.1161/atvbaha.114.304200

    Article  CAS  PubMed  Google Scholar 

  120. Yesilaltay A, Daniels K, Pal R, Krieger M, Kocher O (2009) Loss of PDZK1 causes coronary artery occlusion and myocardial infarction in Paigen diet-fed apolipoprotein E deficient mice. PLoS One 4(12):e8103. https://doi.org/10.1371/journal.pone.0008103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Gonzalez L, MacDonald ME, Deng YD, Trigatti BL (2018) Hyperglycemia aggravates diet-induced coronary artery disease and myocardial infarction in SR-B1-knockout/ApoE-hypomorphic mice. Front Physiol 9:1398. https://doi.org/10.3389/fphys.2018.01398

    Article  PubMed  PubMed Central  Google Scholar 

  122. Tang WHW, Li DY, Hazen SL (2019) Dietary metabolism, the gut microbiome, and heart failure. Nat Rev Cardiol 16(3):137–154. https://doi.org/10.1038/s41569-018-0108-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, Feldstein AE, Britt EB, Fu X, Chung YM, Wu Y, Schauer P, Smith JD, Allayee H, Tang WH, DiDonato JA, Lusis AJ, Hazen SL (2011) Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472(7341):57–63. https://doi.org/10.1038/nature09922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Wang Z, Roberts AB, Buffa JA, Levison BS, Zhu W, Org E, Gu X, Huang Y, Zamanian-Daryoush M, Culley MK, DiDonato AJ, Fu X, Hazen JE, Krajcik D, DiDonato JA, Lusis AJ, Hazen SL (2015) Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis. Cell 163(7):1585–1595. https://doi.org/10.1016/j.cell.2015.11.055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Lindskog Jonsson A, Caesar R, Akrami R, Reinhardt C, Fåk Hållenius F, Borén J, Bäckhed F (2018) Impact of gut microbiota and diet on the development of atherosclerosis in Apoe(−/−) mice. Arterioscler Thromb Vasc Biol 38(10):2318–2326. https://doi.org/10.1161/atvbaha.118.311233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Getz GS, Reardon CA (2018) Diet, microbes, and murine atherosclerosis. Arterioscler Thromb Vasc Biol 38(10):2269–2271. https://doi.org/10.1161/atvbaha.118.311513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Hewing B, Parathath S, Mai CK, Fiel MI, Guo L, Fisher EA (2013) Rapid regression of atherosclerosis with MTP inhibitor treatment. Atherosclerosis 227(1):125–129. https://doi.org/10.1016/j.atherosclerosis.2012.12.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Peled M, Nishi H, Weinstock A, Barrett TJ, Zhou F, Quezada A, Fisher EA (2017) A wild-type mouse-based model for the regression of inflammation in atherosclerosis. PLoS One 12(3):e0173975. https://doi.org/10.1371/journal.pone.0173975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Lieu HD, Withycombe SK, Walker Q, Rong JX, Walzem RL, Wong JS, Hamilton RL, Fisher EA, Young SG (2003) Eliminating atherogenesis in mice by switching off hepatic lipoprotein secretion. Circulation 107(9):1315–1321. https://doi.org/10.1161/01.cir.0000054781.50889.0c

    Article  PubMed  Google Scholar 

  130. Feig JE, Parathath S, Rong JX, Mick SL, Vengrenyuk Y, Grauer L, Young SG, Fisher EA (2011) Reversal of hyperlipidemia with a genetic switch favorably affects the content and inflammatory state of macrophages in atherosclerotic plaques. Circulation 123(9):989–998. https://doi.org/10.1161/circulationaha.110.984146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Trogan E, Feig JE, Dogan S, Rothblat GH, Angeli V, Tacke F, Randolph GJ, Fisher EA (2006) Gene expression changes in foam cells and the role of chemokine receptor CCR7 during atherosclerosis regression in ApoE-deficient mice. Proc Natl Acad Sci U S A 103(10):3781–3786. https://doi.org/10.1073/pnas.0511043103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Llodrá J, Angeli V, Liu J, Trogan E, Fisher EA, Randolph GJ (2004) Emigration of monocyte-derived cells from atherosclerotic lesions characterizes regressive, but not progressive, plaques. Proc Natl Acad Sci U S A 101(32):11779–11784. https://doi.org/10.1073/pnas.0403259101

    Article  PubMed  PubMed Central  Google Scholar 

  133. Feig JE, Rong JX, Shamir R, Sanson M, Vengrenyuk Y, Liu J, Rayner K, Moore K, Garabedian M, Fisher EA (2011) HDL promotes rapid atherosclerosis regression in mice and alters inflammatory properties of plaque monocyte-derived cells. Proc Natl Acad Sci U S A 108(17):7166–7171. https://doi.org/10.1073/pnas.1016086108

    Article  PubMed  PubMed Central  Google Scholar 

  134. Sharma M, Schlegel MP, Afonso MS, Brown EJ, Rahman K, Weinstock A, Sansbury BE, Corr EM, van Solingen C, Koelwyn GJ, Shanley LC, Beckett L, Peled D, Lafaille JJ, Spite M, Loke P, Fisher EA, Moore KJ (2020) Regulatory T cells license macrophage pro-resolving functions during atherosclerosis regression. Circ Res 127(3):335–353. https://doi.org/10.1161/circresaha.119.316461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Godfrey S. Getz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Getz, G.S., Reardon, C.A. (2022). Pig and Mouse Models of Hyperlipidemia and Atherosclerosis. In: Ramji, D. (eds) Atherosclerosis. Methods in Molecular Biology, vol 2419. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1924-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1924-7_24

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1923-0

  • Online ISBN: 978-1-0716-1924-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics