Skip to main content

Monitoring Modified Lipoprotein Uptake and Macropinocytosis Associated with Macrophage Foam Cell Formation

  • Protocol
  • First Online:
Atherosclerosis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2419))

Abstract

Macrophage foam cell formation plays a crucial role in the initiation and progression of atherosclerosis. Macrophages uptake native and modified low density lipoprotein (LDL) through either receptor-dependent or receptor-independent mechanisms to transform into lipid laden foam cells. Foam cells are involved in the formation of fatty streak that is seen during the early stages of atherosclerosis development and therefore represents a promising therapeutic target. Normal or modified lipoproteins labeled with fluorescent dyes such as 1,1′-dioctadecyl-3-3-3′,3′-tetramethylindocarbocyanine perchlorate (Dil) are often used to monitor their internalization during foam cell formation. In addition, the fluorescent dye Lucifer Yellow (LY) is widely used as a marker for macropinocytosis activity. In this chapter, we describe established methods for monitoring modified lipoprotein uptake and macropinocytosis during macrophage foam cell formation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McLaren JE, Michael DR, Ashlin TG, Ramji DP (2011) Cytokines, macrophage lipid metabolism and foam cells: implications for cardiovascular disease therapy. Prog Lipid Res 50(4):331–347. https://doi.org/10.1016/j.plipres.2011.04.002

    Article  CAS  PubMed  Google Scholar 

  2. Chistiakov DA, Melnichenko AA, Myasoedova VA, Grechko AV, Orekhov AN (2017) Mechanisms of foam cell formation in atherosclerosis. J Mol Med 95(11):1153–1165. https://doi.org/10.1007/s00109-017-1575-8

    Article  CAS  PubMed  Google Scholar 

  3. Chu EM, Tai DC, Beer JL, Hill JS (2013) Macrophage heterogeneity and cholesterol homeostasis: classically-activated macrophages are associated with reduced cholesterol accumulation following treatment with oxidized LDL. Biochim Biophys Acta 1831(2):378–386. https://doi.org/10.1016/j.bbalip.2012.10.009

    Article  CAS  PubMed  Google Scholar 

  4. Shah PK (2019) Inflammation, infection and atherosclerosis. Trends Cardiovasc Med 29(8):468–472. https://doi.org/10.1016/j.tcm.2019.01.004

    Article  CAS  PubMed  Google Scholar 

  5. Ooi BK, Ahemad N, Yap WH (2019) A reliable and reproducible assay for determining the effect of natural product on macrophages lipid uptake and cholesterol efflux: a case study of maslinic acid. Prog Drug Discov Biomed Sci 2(1):a0000031

    Article  Google Scholar 

  6. Xia F, Li R, Wang C, Yang S, Tian L, Dong H, Pei C, He S, Jiang P, Cheng H (2013) IRGM1 regulates oxidized LDL uptake by macrophage via actin-dependent receptor internalization during atherosclerosis. Sci Rep 3(1):1–6

    Google Scholar 

  7. Michael DR, Davies TS, Laubertová L, Gallagher H, Ramji DP (2015) The phosphoinositide 3-kinase signaling pathway is involved in the control of modified low-density lipoprotein uptake by human macrophages. Lipids 50(3):253–260

    Article  CAS  Google Scholar 

  8. Ding L, Zhang L, Kim M, Byzova T, Podrez E (2017) Akt3 kinase suppresses pinocytosis of low-density lipoprotein by macrophages via a novel WNK/SGK1/Cdc42 protein pathway. J Biol Chem 292(22):9283–9293

    Article  CAS  Google Scholar 

  9. Fan J, Liu L, Liu Q, Cui Y, Yao B, Zhang M, Gao Y, Fu Y, Dai H, Pan J (2019) CKIP-1 limits foam cell formation and inhibits atherosclerosis by promoting degradation of Oct-1 by REGγ. Nat Commun 10(1):1–14

    Article  Google Scholar 

  10. Raniolo S, Vindigni G, Biocca S (2016) Cholesterol level regulates lectin-like oxidized low-density lipoprotein receptor-1 function. Biomed Spectrosc Imaging 5(s1):S87–S99

    Article  CAS  Google Scholar 

  11. Gu L, Wang Y, Xu Y, Tian Q, Lei G, Zhao C, Gao Z, Pan Q, Zhao W, Nong L (2017) Lunasin functionally enhances LDL uptake via inhibiting PCSK9 and enhancing LDLR expression in vitro and in vivo. Oncotarget 8(46):80826

    Article  Google Scholar 

  12. Chistiakov DA, Bobryshev YV, Orekhov AN (2016) Macrophage-mediated cholesterol handling in atherosclerosis. J Cell Mol Med 20(1):17–28

    Article  CAS  Google Scholar 

  13. Kruth HS (2011) Receptor-independent fluid-phase pinocytosis mechanisms for induction of foam cell formation with native LDL particles. Cur Opin Lipidol 22(5):386

    Article  CAS  Google Scholar 

  14. Bederska M, Borucki W, Znojek E (2012) Movement of fluorescent dyes Lucifer yellow (LYCH) and carboxyfluorescein (CF) in Medicago truncatula Gaertn roots and root nodules. Symbiosis 58(1):183–190

    Google Scholar 

  15. Kruth HS (2013) Fluid-phase pinocytosis of LDL by macrophages: a novel target to reduce macrophage cholesterol accumulation in atherosclerotic lesions. Curr Pharm Des 19(33):5865–5872

    Article  CAS  Google Scholar 

  16. Anzinger J, Chang J, Xu Q, Buono C, Li Y, Leyva F, Park B-C, Greene L, Kruth H (2010) Native low-density lipoprotein uptake by macrophage colony-stimulating factor-differentiated human macrophages is mediated by macropinocytosis and micropinocytosis. Arterioscler Thromb Vasc Biol 30(10):2022–2031

    Google Scholar 

  17. Michael DR, Ashlin TG, Davies CS, Gallagher H, Stoneman TW, Buckley ML, Ramji DP (2013) Differential regulation of macropinocytosis in macrophages by cytokines: implications for foam cell formation and atherosclerosis. Cytokine 64(1):357–361

    Article  CAS  Google Scholar 

  18. Barthwal MK, Anzinger JJ, Xu Q, Bohnacker T, Wymann MP, Kruth HS (2013) Fluid-phase pinocytosis of native low density lipoprotein promotes murine M-CSF differentiated macrophage foam cell formation. PLoS One 8(3):e58054

    Article  CAS  Google Scholar 

  19. Hanani M (2012) Lucifer yellow—an angel rather than the devil. J Cell Mol Med 16(1):22–31

    Article  CAS  Google Scholar 

  20. Swanson J, Silverstein SC (1988) Pinocytic flow through macrophages. In: Pernis B, Silverstein SC, Vogel H (eds) Processing and presentation of antigens. Academic, San Diego, pp 15–27

    Google Scholar 

  21. Colin M, Delporte C, Janky RS, Lechon A-S, Renard G, Van Antwerpen P, Maltese WA, Mathieu V (2019) Dysregulation of macropinocytosis processes in glioblastomas may be exploited to increase intracellular anti-cancer drug levels: the example of temozolomide. Cancers 11(3):411

    Article  CAS  Google Scholar 

  22. Gong X, Sun R, Gao Z, Han W, Liu Y, Zhao L, Jing L, Yao X, Sun X (2018) Tubeimoside 1 acts as a chemotherapeutic synergist via stimulating macropinocytosis. Front Pharmacol 9:1044

    Article  CAS  Google Scholar 

  23. Basrai MA, Naider F, Becker JM (1990) Internalization of lucifer yellow in Candida albicans by fluid phase endocytosis. Microbiology 136(6):1059–1065

    CAS  Google Scholar 

  24. Xu S, Huang Y, Xie Y, Lan T, Le K, Chen J, Chen S, Gao S, Xu X, Shen X (2010) Evaluation of foam cell formation in cultured macrophages: an improved method with oil red O staining and DiI-oxLDL uptake. Cytotechnology 62(5):473–481

    Article  CAS  Google Scholar 

  25. Cheng X, Zhang D-L, Li X-B, Ye J-T, Shi L, Huang Z-S, Gu L-Q, An L-K (2014) Syntheses of diacyltanshinol derivatives and their suppressive effects on macrophage foam cell formation by reducing oxidized LDL uptake. Bioorg Chem 52:24–30

    Article  CAS  Google Scholar 

  26. Collins RF, Touret N, Kuwata H, Tandon NN, Grinstein S, Trimble WS (2009) Uptake of oxidized low density lipoprotein by CD36 occurs by an actin-dependent pathway distinct from macropinocytosis. J Biol Chem 284(44):30288–30297

    Article  CAS  Google Scholar 

  27. Lara-Guzmán OJ, Gil-Izquierdo Á, Medina S, Osorio E, Álvarez-Quintero R, Zuluaga N, Oger C, Galano J-M, Durand T, Muñoz-Durango K (2018) Oxidized LDL triggers changes in oxidative stress and inflammatory biomarkers in human macrophages. Redox Biol 15:1–11

    Article  Google Scholar 

  28. Yang H, Chen S, Tang Y, Dai Y (2011) Interleukin-10 down-regulates oxLDL induced expression of scavenger receptor a and Bak-1 in macrophages derived from THP-1 cells. Arch Biochem Biophys 512(1):30–37

    Article  CAS  Google Scholar 

  29. Gu H-F, Li H-Z, Tang Y-L, Tang X-Q, Zheng X-L, Liao D-F (2016) Nicotinate-curcumin impedes foam cell formation from THP-1 cells through restoring autophagy flux. PLoS One 11(4):e0154820

    Article  Google Scholar 

Download references

Acknowledgments

We thank the British Heart Foundation for financial support (grants PG/16/25/32097 and FS/17/75/33257). AA received PhD studentship from the Kingdom of Saudi Arabia (Jeddah University).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alaa Alahmadi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Alahmadi, A., Ramji, D.P. (2022). Monitoring Modified Lipoprotein Uptake and Macropinocytosis Associated with Macrophage Foam Cell Formation. In: Ramji, D. (eds) Atherosclerosis. Methods in Molecular Biology, vol 2419. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1924-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1924-7_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1923-0

  • Online ISBN: 978-1-0716-1924-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics