Skip to main content

Assessment of Metabolic Regulation by Estrogen Receptors

  • Protocol
  • First Online:
Estrogen Receptors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2418))

Abstract

Estrogens, predominantly 17β-estradiol (E2), are a class of steroid hormones critical for diverse functions in the body both during normal physiology and disease. Primary actions of E2 include reproduction and development of secondary sexual characteristics. In addition, E2 action is involved in the nervous, immune, vascular, muscular, skeletal, and endocrine systems, all of which contribute to multiple aspects of metabolism. The actions of E2 have traditionally been attributed to the classical nuclear estrogen receptors (ERα and ERβ) that largely mediate transcriptional/genomic activities. However, over the last decade, the G protein-coupled estrogen receptor (GPER/GPR30) has become recognized as a mediator of rapid as well as transcriptional actions of E2, employing both in vitro and in vivo approaches. Recent evidence strongly supports the role of GPER in metabolic regulation. Murine genetic knockout (KO) models and pharmacological tools (agonists and antagonists) represent important approaches to understand the mechanisms of E2 action in physiology and disease via GPER. Studies in cells and GPER KO mice have revealed functions for GPER in the regulation of body weight and metabolism. This chapter focuses on methods relevant for the evaluation of metabolic parameters in vivo, ex vivo, and in vitro. We have emphasized glucose homeostasis through the determination of glucose and insulin tolerance, pancreatic islet function, and glucose uptake. In addition, we describe methods of adipocyte isolation, differentiation of preadipocytes, and evaluation of mitochondrial function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Apovian CM (2016) Obesity: definition, comorbidities, causes, and burden. Am J Manag Care 22(7 Suppl):s176–s185

    PubMed  Google Scholar 

  2. Flegal KM, Carroll MD, Ogden CL, Curtin LR (2010) Prevalence and trends in obesity among US adults, 1999–2008. JAMA 303(3):235–241

    Article  CAS  PubMed  Google Scholar 

  3. Guh DP, Zhang W, Bansback N, Amarsi Z, Birmingham CL, Anis AH (2009) The incidence of co-morbidities related to obesity and overweight: a systematic review and meta-analysis. BMC Public Health 9:88

    PubMed  PubMed Central  Google Scholar 

  4. Pantalone KM, Hobbs TM, Chagin KM, Kong SX, Wells BJ, Kattan MW, Bouchard J, Sakurada B, Milinovich A, Weng W, Bauman J, Misra-Hebert AD, Zimmerman RS, Burguera B (2017) Prevalence and recognition of obesity and its associated comorbidities: cross-sectional analysis of electronic health record data from a large US integrated health system. BMJ Open 7(11):e017583

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mauvais-Jarvis F (2015) Sex differences in metabolic homeostasis, diabetes, and obesity. Biol Sex Differ 6:14

    Article  PubMed  PubMed Central  Google Scholar 

  6. Sharma G, Mauvais-Jarvis F, Prossnitz ER (2017) Roles of G protein-coupled estrogen receptor GPER in metabolic regulation. J Steroid Biochem Mol Biol

    Google Scholar 

  7. Kotani K, Tokunaga K, Fujioka S, Kobatake T, Keno Y, Yoshida S, Shimomura I, Tarui S, Matsuzawa Y (1994) Sexual dimorphism of age-related changes in whole-body fat distribution in the obese. Int J Obes Relat Metab Disord 18(4):207–202

    CAS  PubMed  Google Scholar 

  8. Meyer MR, Clegg DJ, Prossnitz ER, Barton M (2011) Obesity, insulin resistance and diabetes: sex differences and role of oestrogen receptors. Acta Physiol (Oxf) 203(1):259–269

    Article  CAS  Google Scholar 

  9. Kozakowski J, Gietka-Czernel M, Leszczynska D, Majos A (2017) Obesity in menopause - our negligence or an unfortunate inevitability? Prz Menopauzalny 16(2):61–65

    PubMed  PubMed Central  Google Scholar 

  10. Garaulet M, Perez-Llamas F, Baraza JC, Garcia-Prieto MD, Fardy PS, Tebar FJ, Zamora S (2002) Body fat distribution in pre-and post-menopausal women: metabolic and anthropometric variables. J Nutr Health Aging 6(2):123–126

    CAS  PubMed  Google Scholar 

  11. Nakhjavani M, Imani M, Larry M, Aghajani-Nargesi A, Morteza A, Esteghamati A (2014) Metabolic syndrome in premenopausal and postmenopausal women with type 2 diabetes: loss of protective effects of premenopausal status. J Diabetes Metab Disord 13(1):102

    Article  PubMed  PubMed Central  Google Scholar 

  12. Regitz-Zagrosek V, Lehmkuhl E, Weickert MO (2006) Gender differences in the metabolic syndrome and their role for cardiovascular disease. Clin Res Cardiol 95(3):136–147

    Article  CAS  PubMed  Google Scholar 

  13. Wang C, Xu Y (2019) Mechanisms for sex differences in energy homeostasis. J Mol Endocrinol 62(2):R129–R143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mauvais-Jarvis F (2011) Estrogen and androgen receptors: regulators of fuel homeostasis and emerging targets for diabetes and obesity. Trends Endocrinol Metab 22(1):24–33

    Article  CAS  PubMed  Google Scholar 

  15. Sharma G, Prossnitz ER (2017) G-protein-coupled estrogen receptor (GPER) and sex-specific metabolic homeostasis. Adv Exp Med Biol 1043:427–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Prossnitz ER, Barton M (2014) Estrogen biology: new insights into GPER function and clinical opportunities. Mol Cell Endocrinol 389(1–2):71–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Prossnitz ER, Hathaway HJ (2015) What have we learned about GPER function in physiology and disease from knockout mice? J Steroid Biochem Mol Biol 153:114–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Haas E, Bhattacharya I, Brailoiu E, Damjanovic M, Brailoiu GC, Gao X, Mueller-Guerre L, Marjon NA, Gut A, Minotti R, Meyer MR, Amann K, Ammann E, Perez-Dominguez A, Genoni M, Clegg DJ, Dun NJ, Resta TC, Prossnitz ER, Barton M (2009) Regulatory role of G protein-coupled estrogen receptor for vascular function and obesity. Circ Res 104(3):288–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Martensson UE, Salehi SA, Windahl S, Gomez MF, Sward K, Daszkiewicz-Nilsson J, Wendt A, Andersson N, Hellstrand P, Grande PO, Owman C, Rosen CJ, Adamo ML, Lundquist I, Rorsman P, Nilsson BO, Ohlsson C, Olde B, Leeb-Lundberg LM (2009) Deletion of the G protein-coupled receptor 30 impairs glucose tolerance, reduces bone growth, increases blood pressure, and eliminates estradiol-stimulated insulin release in female mice. Endocrinology 150(2):687–698

    Article  PubMed  Google Scholar 

  20. Sharma G, Hu C, Brigman JL, Zhu G, Hathaway HJ, Prossnitz ER (2013) GPER deficiency in male mice results in insulin resistance, dyslipidemia, and a proinflammatory state. Endocrinology 154(11):4136–4145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bastard JP, Maachi M, Lagathu C, Kim MJ, Caron M, Vidal H, Capeau J, Feve B (2006) Recent advances in the relationship between obesity, inflammation, and insulin resistance. Eur Cytokine Netw 17(1):4–12

    CAS  PubMed  Google Scholar 

  22. Sam S, Mazzone T (2014) Adipose tissue changes in obesity and the impact on metabolic function. Transl Res 164(4):284–292

    Article  CAS  PubMed  Google Scholar 

  23. Greenberg AS, Obin MS (2006) Obesity and the role of adipose tissue in inflammation and metabolism. Am J Clin Nutr 83(2):461S–465S

    Article  CAS  PubMed  Google Scholar 

  24. Bournat JC, Brown CW (2010) Mitochondrial dysfunction in obesity. Curr Opin Endocrinol Diabetes Obes 17(5):446–452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Al-Goblan AS, Al-Alfi MA, Khan MZ (2014) Mechanism linking diabetes mellitus and obesity. Diabetes Metab Syndr Obes 7:587–591

    Article  PubMed  PubMed Central  Google Scholar 

  26. Cerf ME (2013) Beta cell dysfunction and insulin resistance. Front Endocrinol (Lausanne) 4:37

    Article  Google Scholar 

  27. Bedogni G, Gastaldelli A, Manco M, De Col A, Agosti F, Tiribelli C, Sartorio A (2012) Relationship between fatty liver and glucose metabolism: a cross-sectional study in 571 obese children. Nutr Metab Cardiovasc Dis 22(2):120–126

    Article  CAS  PubMed  Google Scholar 

  28. Sharma G, Hu C, Staquicini DI, Brigman JL, Liu M, Mauvais-Jarvis F, Pasqualini R, Arap W, Arterburn JB, Hathaway HJ, Prossnitz ER (2020) Preclinical efficacy of the GPER-selective agonist G-1 in mouse models of obesity and diabetes. Sci Transl Med 12(528):eaau5956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lowell BB, Shulman GI (2005) Mitochondrial dysfunction and type 2 diabetes. Science 307(5708):384–387

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are supported by grants from the National Institutes of Health (NIH R01 CA163890 and CA194496 to E.R.P.) from Dialysis Clinic, Inc. (E.R.P.), from the University of New Mexico School of Medicine Research Allocation Committee (G.S.) and by the UNM Comprehensive Cancer Center (P30 CA118100), and the Autophagy, Inflammation and Metabolism (AIM) Center of Biomedical Research Excellence (CoBRE, NIH P20 GM121176).

Disclosures: E.R.P. is an inventor on U.S. Patent Nos. 10,251,870, 10,561,648 and 10,682,341 and G.S. and E.R.P. are inventors on U.S. patent No. 10,471,047, all for the therapeutic use of compounds targeting GPER (“Method for treating obesity, diabetes, cardiovascular and kidney diseases by regulating GPR30 /GPER”). E.R.P. is an inventor on U.S. Patent Nos. 7,875,721 and 8,487,100 for GPER-selective ligands and imaging agents (“Compounds for binding to ERα/β and GPR30 , methods of treating disease states and conditions mediated through these receptors and identification thereof”).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Geetanjali Sharma or Eric R. Prossnitz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sharma, G., Prossnitz, E.R. (2022). Assessment of Metabolic Regulation by Estrogen Receptors. In: Eyster, K.M. (eds) Estrogen Receptors. Methods in Molecular Biology, vol 2418. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1920-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1920-9_21

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1919-3

  • Online ISBN: 978-1-0716-1920-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics