Skip to main content

An Optimized ChIP-Seq Protocol to Determine Chromatin Binding of Estrogen Receptor Beta

  • Protocol
  • First Online:
Estrogen Receptors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2418))

Abstract

Estrogen regulates transcription through two nuclear receptors, ERα and ERβ, in a tissue and cellular-dependent manner. Both the receptors bind estrogen and activate transcription through direct or indirect interactions with DNA. Revealing their interactions with the chromatin is key to understanding their transcriptional activities and their biological functions. Chromatin-immunoprecipitation followed by sequencing (ChIP-Seq) is a powerful technique to map protein–DNA interactions at precise genomic locations. The genome-wide binding of ERα has been extensively studied. Similar studies of ERβ, however, have been more difficult, in part due to a lack of endogenous expression in cell lines and lack of specific antibodies. In this chapter, we provide an optimized stepwise ChIP protocol for a well-validated ERβ antibody, which is applicable for ChIP-Seq analysis of cell lines with exogenous expression of ERβ.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nilsson S, Mäkelä S, Treuter E, Tujague M, Thomsen J, Andersson G, Enmark E, Pettersson K, Warner M, Gustafsson JA (2001) Mechanisms of estrogen action. Physiol Rev 81(4):1535–1565. https://doi.org/10.1152/physrev.2001.81.4.1535

    Article  CAS  PubMed  Google Scholar 

  2. Cowley SM, Parker MG (1999) A comparison of transcriptional activation by ER alpha and ER beta. J Steroid Biochem Mol Biol 69(1–6):165–175. https://doi.org/10.1016/s0960-0760(99)00055-2

    Article  CAS  PubMed  Google Scholar 

  3. Jakacka M, Ito M, Weiss J, Chien PY, Gehm BD, Jameson JL (2001) Estrogen receptor binding to DNA is not required for its activity through the nonclassical AP1 pathway. J Biol Chem 276(17):13615–13621. https://doi.org/10.1074/jbc.M008384200

    Article  CAS  PubMed  Google Scholar 

  4. Björnström L, Sjöberg M (2004) Estrogen receptor-dependent activation of AP-1 via non-genomic signalling. Nucl Recept 2(1):3–3. https://doi.org/10.1186/1478-1336-2-3

    Article  PubMed  PubMed Central  Google Scholar 

  5. Robertson G, Hirst M, Bainbridge M, Bilenky M, Zhao Y, Zeng T, Euskirchen G, Bernier B, Varhol R, Delaney A, Thiessen N, Griffith OL, He A, Marra M, Snyder M, Jones S (2007) Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nat Methods 4(8):651–657. https://doi.org/10.1038/nmeth1068

    Article  CAS  PubMed  Google Scholar 

  6. Valouev A, Johnson DS, Sundquist A, Medina C, Anton E, Batzoglou S, Myers RM, Sidow A (2008) Genome-wide analysis of transcription factor binding sites based on ChIP-Seq data. Nat Methods 5(9):829–834. https://doi.org/10.1038/nmeth.1246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wederell ED, Bilenky M, Cullum R, Thiessen N, Dagpinar M, Delaney A, Varhol R, Zhao Y, Zeng T, Bernier B, Ingham M, Hirst M, Robertson G, Marra MA, Jones S, Hoodless PA (2008) Global analysis of in vivo Foxa2-binding sites in mouse adult liver using massively parallel sequencing. Nucleic Acids Res 36(14):4549–4564. https://doi.org/10.1093/nar/gkn382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sheaffer KL, Schug J (2016) ChIP-Seq: library preparation and sequencing. Methods Mol Biol 1402:101–117. https://doi.org/10.1007/978-1-4939-3378-5_9

    Article  CAS  PubMed  Google Scholar 

  9. Furey TS (2012) ChIP–seq and beyond: new and improved methodologies to detect and characterize protein–DNA interactions. Nat Rev Genet 13:840. https://doi.org/10.1038/nrg3306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Park PJ (2009) ChIP–seq: advantages and challenges of a maturing technology. Nat Rev Genet 10:669. https://doi.org/10.1038/nrg2641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jiang S, Mortazavi A (2018) Integrating ChIP-seq with other functional genomics data. Brief Funct Genomics 17(2):104–115. https://doi.org/10.1093/bfgp/ely002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rehimi R, Bartusel M, Solinas F, Altmuller J, Rada-Iglesias A (2017) Chromatin immunoprecipitation (ChIP) protocol for low-abundance embryonic samples. J Vis Exp 126:56186. https://doi.org/10.3791/56186

    Article  CAS  Google Scholar 

  13. Ribarska T, Gilfillan GD (2018) Native chromatin immunoprecipitation-sequencing (ChIP-Seq) from low cell numbers. Methods Mol Biol 1689:157–166. https://doi.org/10.1007/978-1-4939-7380-4_14

    Article  CAS  PubMed  Google Scholar 

  14. Diaz RE, Sanchez A, Anton Le Berre V, Bouet JY (2017) High-resolution chromatin immunoprecipitation: ChIP-sequencing. Methods Mol Biol 1624:61–73. https://doi.org/10.1007/978-1-4939-7098-8_6

    Article  CAS  PubMed  Google Scholar 

  15. Nakato R, Shirahige K (2017) Recent advances in ChIP-seq analysis: from quality management to whole-genome annotation. Brief Bioinform 18(2):279–290. https://doi.org/10.1093/bib/bbw023

    Article  CAS  PubMed  Google Scholar 

  16. Stender JD, Nwachukwu JC, Kastrati I, Kim Y, Strid T, Yakir M, Srinivasan S, Nowak J, Izard T, Rangarajan ES, Carlson KE, Katzenellenbogen JA, Yao X-Q, Grant BJ, Leong HS, Lin C-Y, Frasor J, Nettles KW, Glass CK (2017) Structural and molecular mechanisms of cytokine-mediated endocrine resistance in human breast cancer cells. Mol Cell 65(6):1122–1135.e1125. https://doi.org/10.1016/j.molcel.2017.02.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Carroll JS, Liu XS, Brodsky AS, Li W, Meyer CA, Szary AJ, Eeckhoute J, Shao W, Hestermann EV, Geistlinger TR, Fox EA, Silver PA, Brown M (2005) Chromosome-wide mapping of estrogen receptor binding reveals long-range regulation requiring the forkhead protein FoxA1. Cell 122(1):33–43. https://doi.org/10.1016/j.cell.2005.05.008

    Article  CAS  PubMed  Google Scholar 

  18. Carroll JS, Meyer CA, Song J, Li W, Geistlinger TR, Eeckhoute J, Brodsky AS, Keeton EK, Fertuck KC, Hall GF, Wang Q, Bekiranov S, Sementchenko V, Fox EA, Silver PA, Gingeras TR, Liu XS, Brown M (2006) Genome-wide analysis of estrogen receptor binding sites. Nat Genet 38(11):1289–1297. https://doi.org/10.1038/ng1901

    Article  CAS  PubMed  Google Scholar 

  19. Gertz J, Savic D, Varley KE, Partridge EC, Safi A, Jain P, Cooper GM, Reddy TE, Crawford GE, Myers RM (2013) Distinct properties of cell-type-specific and shared transcription factor binding sites. Mol Cell 52(1):25–36. https://doi.org/10.1016/j.molcel.2013.08.037

    Article  CAS  PubMed  Google Scholar 

  20. Krum SA, Miranda-Carboni GA, Lupien M, Eeckhoute J, Carroll JS, Brown M (2008) Unique ERalpha cistromes control cell type-specific gene regulation. Mol Endocrinol 22(11):2393–2406. https://doi.org/10.1210/me.2008-0100

    Article  CAS  PubMed  Google Scholar 

  21. Zwart W, Koornstra R, Wesseling J, Rutgers E, Linn S, Carroll JS (2013) A carrier-assisted ChIP-seq method for estrogen receptor-chromatin interactions from breast cancer core needle biopsy samples. BMC Genomics 14:232. https://doi.org/10.1186/1471-2164-14-232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jansen MPHM, Knijnenburg T, Reijm EA, Simon I, Kerkhoven R, Droog M, Velds A, van Laere S, Dirix L, Alexi X, Foekens JA, Wessels L, Linn SC, Berns EMJJ, Zwart W (2013) Hallmarks of aromatase inhibitor drug resistance revealed by epigenetic profiling in breast cancer. Cancer Res 73(22):6632–6641. https://doi.org/10.1158/0008-5472.Can-13-0704

    Article  CAS  PubMed  Google Scholar 

  23. Ross-Innes CS, Stark R, Teschendorff AE, Holmes KA, Ali HR, Dunning MJ, Brown GD, Gojis O, Ellis IO, Green AR, Ali S, Chin S-F, Palmieri C, Caldas C, Carroll JS (2012) Differential oestrogen receptor binding is associated with clinical outcome in breast cancer. Nature 481(7381):389–393. https://doi.org/10.1038/nature10730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Andersson S, Sundberg M, Pristovsek N, Ibrahim A, Jonsson P, Katona B, Clausson CM, Zieba A, Ramstrom M, Soderberg O, Williams C, Asplund A (2017) Insufficient antibody validation challenges oestrogen receptor beta research. Nat Commun 8:15840. https://doi.org/10.1038/ncomms15840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Holbeck S, Chang J, Best AM, Bookout AL, Mangelsdorf DJ, Martinez ED (2010) Expression profiling of nuclear receptors in the NCI60 cancer cell panel reveals receptor-drug and receptor-gene interactions. Mol Endocrinol 24(6):1287–1296. https://doi.org/10.1210/me.2010-0040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Andrews S (2010) FastQC: A quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/. Accessed 10 Dec 2020

  27. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with bowtie 2. Nat Methods 9(4):357–359. https://doi.org/10.1038/nmeth.1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li H, Durbin R (2009) Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics 25(14):1754–1760. https://doi.org/10.1093/bioinformatics/btp324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29(1):15–21. https://doi.org/10.1093/bioinformatics/bts635

    Article  CAS  PubMed  Google Scholar 

  30. Ziemann M (2016) Accuracy, speed and error tolerance of short DNA sequence aligners. bioRxiv:053686. https://doi.org/10.1101/053686

  31. Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nusbaum C, Myers RM, Brown M, Li W, Liu XS (2008) Model-based analysis of ChIP-Seq (MACS). Genome Biol 9(9):R137. https://doi.org/10.1186/gb-2008-9-9-r137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, Cheng JX, Murre C, Singh H, Glass CK (2010) Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell 38(4):576–589. https://doi.org/10.1016/j.molcel.2010.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Guo Y, Mahony S, Gifford DK (2012) High resolution genome wide binding event finding and motif discovery reveals transcription factor spatial binding constraints. PLoS Comput Biol 8(8):e1002638. https://doi.org/10.1371/journal.pcbi.1002638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Harmanci A, Rozowsky J, Gerstein M (2014) MUSIC: identification of enriched regions in ChIP-Seq experiments using a mappability-corrected multiscale signal processing framework. Genome Biol 15(10):474–474. https://doi.org/10.1186/s13059-014-0474-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. de Boer BA, van Duijvenboden K, van den Boogaard M, Christoffels VM, Barnett P, Ruijter JM (2014) OccuPeak: ChIP-Seq peak calling based on internal background modelling. PLoS One 9(6):e99844. https://doi.org/10.1371/journal.pone.0099844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Awdeh A, Turcotte M, Perkins TJ (2019) WACS: improving peak calling by optimally weighting controls. bioRxiv:582650. https://doi.org/10.1101/582650

  37. Landt S, Marinov G, Kundaje A, Kheradpour P, Pauli Behn F, Batzoglou S, Bernstein B, Bickel P, Brown J, Cayting P, Chen Y, Desalvo G, Epstein C, Fisher-Aylor K, Euskirchen G, Gerstein M, Gertz J, Hartemink A, Hoffman M, Snyder M (2012) ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. Genome Res 22:1813–1831. https://doi.org/10.1101/gr.136184.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Indukuri R, Jafferali MH, Song D, Hases L, Damdimopoulos A, Zhao C, Archer A, Williams C (2021) The genome-wide binding landscape of estrogen receptor β in human colon cancer cells reveals its tumor suppressor activity. Int J Cancer 49(3):692–706

    Article  Google Scholar 

  39. Chen TW, Li HP, Lee CC, Gan RC, Huang PJ, Wu TH, Lee CY, Chang YF, Tang P (2014) ChIPseek, a web-based analysis tool for ChIP data. BMC Genomics 15(1):539. https://doi.org/10.1186/1471-2164-15-539

    Article  PubMed  PubMed Central  Google Scholar 

  40. Boeva V, Lermine A, Barette C, Guillouf C, Barillot E (2012) Nebula--a web-server for advanced ChIP-seq data analysis. Bioinformatics 28(19):2517–2519. https://doi.org/10.1093/bioinformatics/bts463

    Article  CAS  PubMed  Google Scholar 

  41. Li M, Tang L, Wu F-X, Pan Y, Wang J (2019) CSA: a web service for the complete process of ChIP-Seq analysis. BMC Bioinformatics 20(15):515. https://doi.org/10.1186/s12859-019-3090-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Esopi D (2015) A technical guide to conquering ChIP. https://www.whatisepigenetics.com/collecting-analyzing-libraries-for-chromatin-immunoprecipitation/. Accessed 4 Jan 2021

Download references

Acknowledgments

We would like to thank Dr. Jun Wang and Dr. Fahmi Mesmar (previously at University of Houston) for assistance with experiments. This work was supported by the Swedish Cancer Society (CAN 2018/596) and the Swedish Research Council (2017-01658).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cecilia Williams .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Indukuri, R., Damdimopoulos, A., Williams, C. (2022). An Optimized ChIP-Seq Protocol to Determine Chromatin Binding of Estrogen Receptor Beta. In: Eyster, K.M. (eds) Estrogen Receptors. Methods in Molecular Biology, vol 2418. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1920-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1920-9_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1919-3

  • Online ISBN: 978-1-0716-1920-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics