Skip to main content

Induction of Human Naïve Pluripotency Using 5i/L/A Medium

  • Protocol
  • First Online:
Human Naïve Pluripotent Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2416))

Abstract

Prior to implantation, the cells in the mammalian epiblast constitute a naïve pluripotent state, which is distinguished by absence of lineage priming, freedom from epigenetic restriction, and expression of a unique set of transcription factors. However, human embryonic stem cells (hESCs) derived under conventional conditions have exited this naïve state and acquired a more advanced “primed” pluripotent state that corresponds to the post-implantation epiblast. We have developed a cocktail comprising five kinase inhibitors and two growth factors (5i/L/A) that enables induction of defining features of naïve pluripotency in primed hESCs. These conditions can also be applied to induce naïve pluripotency in patient-specific induced pluripotent stem cells (iPSCs). Here, we provide a detailed protocol for inducing naïve pluripotency in primed hESCs and iPSCs and methods for the routine validation of naïve identity. We also outline the use of two fluorescent reporter systems to track acquisition of naïve identity in live cells: (a) a GFP reporter linked to an endogenous OCT4 allele in which the primed-specific proximal enhancer has been deleted (OCT4-ΔPE-GFP); and (b) a dual-color reporter system targeted to both alleles of an X-linked gene that reports on the status of the X chromosome in female cells (MECP2-GFP/tdTomato). The conditions described herein have given insight into various aspects of naïve human pluripotent stem cells (hPSCs), including their unique transposon transcription profile, X chromosome status, and extraembryonic potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Nichols J, Smith A (2009) Naive and primed pluripotent states. Cell Stem Cell 4(6):487–492. https://doi.org/10.1016/j.stem.2009.05.015

    Article  CAS  PubMed  Google Scholar 

  2. Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A 78(12):7634–7638. https://doi.org/10.1073/pnas.78.12.7634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292(5819):154–156

    Article  CAS  PubMed  Google Scholar 

  4. Brons IG, Smithers LE, Trotter MW, Rugg-Gunn P, Sun B, Chuva de Sousa Lopes SM, Howlett SK, Clarkson A, Ahrlund-Richter L, Pedersen RA, Vallier L (2007) Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 448(7150):191–195. https://doi.org/10.1038/nature05950

    Article  CAS  PubMed  Google Scholar 

  5. Tesar PJ, Chenoweth JG, Brook FA, Davies TJ, Evans EP, Mack DL, Gardner RL, McKay RD (2007) New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 448(7150):196–199. https://doi.org/10.1038/nature05972

    Article  CAS  PubMed  Google Scholar 

  6. Gafni O, Weinberger L, Mansour AA, Manor YS, Chomsky E, Ben-Yosef D, Kalma Y, Viukov S, Maza I, Zviran A, Rais Y, Shipony Z, Mukamel Z, Krupalnik V, Zerbib M, Geula S, Caspi I, Schneir D, Shwartz T, Gilad S, Amann-Zalcenstein D, Benjamin S, Amit I, Tanay A, Massarwa R, Novershtern N, Hanna JH (2013) Derivation of novel human ground state naive pluripotent stem cells. Nature 504(7479):282–286. https://doi.org/10.1038/nature12745

    Article  CAS  PubMed  Google Scholar 

  7. Chan YS, Goke J, Ng JH, Lu X, Gonzales KA, Tan CP, Tng WQ, Hong ZZ, Lim YS, Ng HH (2013) Induction of a human pluripotent state with distinct regulatory circuitry that resembles preimplantation epiblast. Cell Stem Cell 13(6):663–675. https://doi.org/10.1016/j.stem.2013.11.015

    Article  CAS  PubMed  Google Scholar 

  8. Ware CB, Nelson AM, Mecham B, Hesson J, Zhou W, Jonlin EC, Jimenez-Caliani AJ, Deng X, Cavanaugh C, Cook S, Tesar PJ, Okada J, Margaretha L, Sperber H, Choi M, Blau CA, Treuting PM, Hawkins RD, Cirulli V, Ruohola-Baker H (2014) Derivation of naive human embryonic stem cells. Proc Natl Acad Sci U S A 111(12):4484–4489. https://doi.org/10.1073/pnas.1319738111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Theunissen TW, Powell BE, Wang H, Mitalipova M, Faddah DA, Reddy J, Fan ZP, Maetzel D, Ganz K, Shi L, Lungjangwa T, Imsoonthornruksa S, Stelzer Y, Rangarajan S, D'Alessio A, Zhang J, Gao Q, Dawlaty MM, Young RA, Gray NS, Jaenisch R (2014) Systematic identification of culture conditions for induction and maintenance of naive human pluripotency. Cell Stem Cell 15(4):471–487. https://doi.org/10.1016/j.stem.2014.07.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Takashima Y, Guo G, Loos R, Nichols J, Ficz G, Krueger F, Oxley D, Santos F, Clarke J, Mansfield W, Reik W, Bertone P, Smith A (2014) Resetting transcription factor control circuitry toward ground-state pluripotency in human. Cell 158(6):1254–1269. https://doi.org/10.1016/j.cell.2014.08.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zimmerlin L, Park TS, Huo JS, Verma K, Pather SR, Talbot CC Jr, Agarwal J, Steppan D, Zhang YW, Considine M, Guo H, Zhong X, Gutierrez C, Cope L, Canto-Soler MV, Friedman AD, Baylin SB, Zambidis ET (2016) Tankyrase inhibition promotes a stable human naive pluripotent state with improved functionality. Development 143(23):4368–4380. https://doi.org/10.1242/dev.138982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Qin H, Hejna M, Liu Y, Percharde M, Wossidlo M, Blouin L, Durruthy-Durruthy J, Wong P, Qi Z, Yu J, Qi LS, Sebastiano V, Song JS, Ramalho-Santos M (2016) YAP induces human naive pluripotency. Cell Rep 14(10):2301–2312. https://doi.org/10.1016/j.celrep.2016.02.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hanna J, Cheng AW, Saha K, Kim J, Lengner CJ, Soldner F, Cassady JP, Muffat J, Carey BW, Jaenisch R (2010) Human embryonic stem cells with biological and epigenetic characteristics similar to those of mouse ESCs. Proc Natl Acad Sci U S A 107(20):9222–9227. https://doi.org/10.1073/pnas.1004584107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yeom YI, Fuhrmann G, Ovitt CE, Brehm A, Ohbo K, Gross M, Hubner K, Scholer HR (1996) Germline regulatory element of Oct-4 specific for the totipotent cycle of embryonal cells. Development 122(3):881–894

    Article  CAS  PubMed  Google Scholar 

  15. Ying QL, Wray J, Nichols J, Batlle-Morera L, Doble B, Woodgett J, Cohen P, Smith A (2008) The ground state of embryonic stem cell self-renewal. Nature 453(7194):519–523. https://doi.org/10.1038/nature06968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Theunissen TW, Friedli M, He Y, Planet E, O'Neil RC, Markoulaki S, Pontis J, Wang H, Iouranova A, Imbeault M, Duc J, Cohen MA, Wert KJ, Castanon R, Zhang Z, Huang Y, Nery JR, Drotar J, Lungjangwa T, Trono D, Ecker JR, Jaenisch R (2016) Molecular criteria for defining the naive human pluripotent state. Cell Stem Cell 19(4):502–515. https://doi.org/10.1016/j.stem.2016.06.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Friedli M, Trono D (2015) The developmental control of transposable elements and the evolution of higher species. Annu Rev Cell Dev Biol 31(1):429–451. https://doi.org/10.1146/annurev-cellbio-100814-125514

    Article  CAS  PubMed  Google Scholar 

  18. Guo H, Zhu P, Yan L, Li R, Hu B, Lian Y, Yan J, Ren X, Lin S, Li J, Jin X, Shi X, Liu P, Wang X, Wang W, Wei Y, Li X, Guo F, Wu X, Fan X, Yong J, Wen L, Xie SX, Tang F, Qiao J (2014) The DNA methylation landscape of human early embryos. Nature 511:606. https://doi.org/10.1038/nature13544. https://www.nature.com/articles/nature13544#supplementary-information

    Article  CAS  PubMed  Google Scholar 

  19. Pastor WA, Chen D, Liu W, Kim R, Sahakyan A, Lukianchikov A, Plath K, Jacobsen SE, Clark AT (2016) Naive human pluripotent cells feature a methylation landscape devoid of blastocyst or germline memory. Cell Stem Cell 18(3):323–329. https://doi.org/10.1016/j.stem.2016.01.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sahakyan A, Kim R, Chronis C, Sabri S, Bonora G, Theunissen TW, Kuoy E, Langerman J, Clark AT, Jaenisch R, Plath K (2017) Human naive pluripotent stem cells model X chromosome dampening and X inactivation. Cell Stem Cell 20(1):87–101. https://doi.org/10.1016/j.stem.2016.10.006

    Article  CAS  PubMed  Google Scholar 

  21. Guo G, von Meyenn F, Santos F, Chen Y, Reik W, Bertone P, Smith A, Nichols J (2016) Naive pluripotent stem cells derived directly from isolated cells of the human inner cell mass. Stem Cell Reports 6(4):437–446. https://doi.org/10.1016/j.stemcr.2016.02.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Stirparo GG, Boroviak T, Guo G, Nichols J, Smith A, Bertone P (2018) Integrated analysis of single-cell embryo data yields a unified transcriptome signature for the human pre-implantation epiblast. Development 145(3):dev158501. https://doi.org/10.1242/dev.158501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nakamura T, Okamoto I, Sasaki K, Yabuta Y, Iwatani C, Tsuchiya H, Seita Y, Nakamura S, Yamamoto T, Saitou M (2016) A developmental coordinate of pluripotency among mice, monkeys and humans. Nature 537(7618):57–62. https://doi.org/10.1038/nature19096

    Article  CAS  PubMed  Google Scholar 

  24. Dong C, Beltcheva M, Gontarz P, Zhang B, Popli P, Fischer LA, Khan SA, Park KM, Yoon EJ, Xing X, Kommagani R, Wang T, Solnica-Krezel L, Theunissen TW (2020) Derivation of trophoblast stem cells from naive human pluripotent stem cells. elife 9:e52504. https://doi.org/10.7554/eLife.52504

    Article  PubMed  PubMed Central  Google Scholar 

  25. Cinkornpumin JK, Kwon SY, Guo Y, Hossain I, Sirois J, Russett CS, Tseng HW, Okae H, Arima T, Duchaine TF, Liu W, Pastor WA (2020) Naive human embryonic stem cells can give rise to cells with a trophoblast-like transcriptome and Methylome. Stem Cell Reports 15(1):198–213. https://doi.org/10.1016/j.stemcr.2020.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Petropoulos S, Edsgard D, Reinius B, Deng Q, Panula SP, Codeluppi S, Plaza Reyes A, Linnarsson S, Sandberg R, Lanner F (2016) Single-cell RNA-Seq reveals lineage and X chromosome dynamics in human preimplantation embryos. Cell 165(4):1012–1026. https://doi.org/10.1016/j.cell.2016.03.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. An C, Feng G, Zhang J, Cao S, Wang Y, Wang N, Lu F, Zhou Q, Wang H (2020) Overcoming autocrine FGF signaling-induced heterogeneity in naive human ESCs enables modeling of random X chromosome inactivation. Cell Stem Cell 27(3):482–497. e484. https://doi.org/10.1016/j.stem.2020.06.002

    Article  CAS  PubMed  Google Scholar 

  28. Bredenkamp N, Stirparo GG, Nichols J, Smith A, Guo G (2019) The cell-surface marker sushi containing domain 2 facilitates establishment of human naive pluripotent stem cells. Stem Cell Reports 12(6):1212–1222. https://doi.org/10.1016/j.stemcr.2019.03.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Collier AJ, Panula SP, Schell JP, Chovanec P, Plaza Reyes A, Petropoulos S, Corcoran AE, Walker R, Douagi I, Lanner F, Rugg-Gunn PJ (2017) Comprehensive cell surface protein profiling identifies specific markers of human naive and primed pluripotent states. Cell Stem Cell 20(6):874–890.e7. https://doi.org/10.1016/j.stem.2017.02.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lengner CJ, Gimelbrant AA, Erwin JA, Cheng AW, Guenther MG, Welstead GG, Alagappan R, Frampton GM, Xu P, Muffat J, Santagata S, Powers D, Barrett CB, Young RA, Lee JT, Jaenisch R, Mitalipova M (2010) Derivation of pre-X inactivation human embryonic stem cells under physiological oxygen concentrations. Cell 141(5):872–883. https://doi.org/10.1016/j.cell.2010.04.010

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Work in our laboratory is supported by the NIH Director’s New Innovator Award (DP2 GM137418) and grants from the Shipley Foundation Program for Innovation in Stem Cell Science, the Edward Mallinckrodt, Jr. Foundation, and the Washington University Children’s Discovery Institute. No federal NIH/NIGMS funds are used to develop 3D models of early human development. We thank Kyoung-mi Park for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thorold W. Theunissen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Fischer, L.A., Khan, S.A., Theunissen, T.W. (2022). Induction of Human Naïve Pluripotency Using 5i/L/A Medium. In: Rugg-Gunn, P. (eds) Human Naïve Pluripotent Stem Cells. Methods in Molecular Biology, vol 2416. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1908-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1908-7_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1907-0

  • Online ISBN: 978-1-0716-1908-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics