Skip to main content

Chemical Biology of Mitotic Spindle Assembly Motors

  • Protocol
  • First Online:
Mitosis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2415))

  • 903 Accesses

Abstract

Mitotic kinesins play essential roles during mitotic spindle assembly and in ensuring proper chromosome segregation. Chemical inhibitors of mitotic kinesins are therefore valuable tools to study kinesin function in vitro and in cells. Because cancer is a disease of unregulated cell division, inhibitors also represent potential chemotherapeutic agents. Here, we present assays that can be used to evaluate the potency and specificity of mitotic kinesin inhibitors identified from high-throughput screening. By evaluating their effects in a variety of in vitro, fixed-cell, and live cell assays, screening hits can be prioritized and optimized to produce effective, on-target inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Verhey KJ, Hammond JW (2009) Traffic control: regulation of kinesin motors. Nat Rev Mol Cell Biol 10(11):765–777

    Article  CAS  Google Scholar 

  2. Drummond DR (2011) Regulation of microtubule dynamics by kinesins. Semin Cell Dev Biol 22(9):927–934

    Article  CAS  Google Scholar 

  3. Akhmanova A, Steinmetz MO (2015) Control of microtubule organization and dynamics: two ends in the limelight. Nat Rev Mol Cell Biol 16(12):711–716

    Article  CAS  Google Scholar 

  4. Hirokawa N, Pfister KK, Yorifuji H, Wagner MC, Brady ST, Bloom GS (1989) Submolecular domains of bovine brain kinesin identified by electron microscopy and monoclonal antibody decoration. Cell 56(5):867–878

    Article  CAS  Google Scholar 

  5. Sawin KE, Leguellect K, Philippet M, Mitchison TJ (1992) Mitotic spindle organization by a plus-end-directed microtubule motor. Nature 359(6395):540–543

    Article  CAS  Google Scholar 

  6. Mayer TU, Kapoor TM, Haggarty SJ, King RW, Schreiber SL, Mitchison TJ (1999) Smart molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. Science 286(5441):971–974

    Article  CAS  Google Scholar 

  7. Blangy A, Lane HA, d’Hérin P, Harper M, Kress M, Niggt EA (1995) Phosphorylation by p34cdc2 regulates spindle association of human Eg5, a kinesin-related motor essential for bipolar spindle formation in vivo. Cell 83(7):1159–1169

    Article  CAS  Google Scholar 

  8. Ferenz NP, Gable A, Wadsworth P (2010) Mitotic functions of kinesin-5. Semin Cell Dev Biol 21(3):255–259

    Article  CAS  Google Scholar 

  9. Sawin KE, Mitchison TJ (1995) Mutations in the kinesin-like protein Eg5 disrupting localization to the mitotic spindle. Proc Natl Acad Sci 92(10):4289–4293

    Article  CAS  Google Scholar 

  10. Kapoor TM, Mayer TU, Coughlin ML, Mitchison TJ (2000) Probing spindle assembly mechanisms with monastrol, a small molecule inhibitor of the mitotic kinesin, Eg5. J Cell Biol 150(5):975–988

    Article  CAS  Google Scholar 

  11. Jordan MA, Wilson L (2004) Microtubules as a target for anticancer drugs. Nat Rev Cancer 4(4):253–265

    Article  CAS  Google Scholar 

  12. Tuxen MK, Hansen SW (1994) Neurotoxicity secondary to antineoplastic drugs. Cancer Treat Rev 20(2):191–214

    Article  CAS  Google Scholar 

  13. Rowinsky EK (1997) The development and clinical utility of the taxane class of antimicrotubule chemotherapy agents. Annu Rev Med 48(1):353–374

    Article  CAS  Google Scholar 

  14. Lipton RB, Apfel SC, Dutcher JP, Rosenberg R, Kaplan J, Berger A, Einzig AI, Wiernik P, Schaumburg HH (1989) Taxol produces a predominantly sensory neuropathy. Neurology 39(3):368–373

    Article  CAS  Google Scholar 

  15. Dumas ME, Chen G-Y, Kendrick ND, Xu G, Larsen SD, Jana S, Waterson AG, Bauer JA, Hancock W, Sulikowski GA, Ohi R (2019) Dual inhibition of Kif15 by oxindole and quinazolinedione chemical probes. Bioorg Med Chem Lett 29(2):148–154

    Article  CAS  Google Scholar 

  16. Zhang JH, Chung TDY, Oldenburg KR (1999) A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J Biomol Screen 4(2):67–73

    Article  CAS  Google Scholar 

  17. Sturgill EG, Das DK, Takizawa Y, Shin Y, Collier SE, Ohi MD, Hwang W, Lang MJ, Ohi R (2014) Report kinesin-12 Kif15 targets kinetochore fibers through an intrinsic two-step mechanism. Curr Biol 24:2307–2313

    Article  CAS  Google Scholar 

  18. Tanenbaum ME, Macůrek L, Janssen A, Geers EF, Alvarez-Fernández M, Medema RH (2009) Kif15 cooperates with Eg5 to promote bipolar spindle assembly. Curr Biol 19(20):1703–1711

    Article  CAS  Google Scholar 

  19. Debonis S, Skoufias DA, Lebeau L, Lopez R, Robin G, Margolis RL, Wade RH, Kozielski F (2004) In vitro screening for inhibitors of the human mitotic kinesin Eg5 with antimitotic and antitumor activities. Mol Cancer Ther 3(9):1079–1090

    CAS  PubMed  Google Scholar 

  20. Sturgill EG, Norris SR, Guo Y, Ohi R (2016) Kinesin-5 inhibitor resistance is driven by kinesin-12. J Cell Biol 213(2):213–227

    Article  CAS  Google Scholar 

  21. Hobro AJ, Smith NI (2017) An evaluation of fixation methods: spatial and compositional cellular changes observed by Raman imaging. Vib Spectrosc 91:31–45

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the Ohi lab that made this work possible, as well as Emma Sturgill, Megan Dumas, and George Xu for doing extensive optimization of these assays. We would also like to acknowledge NIH grant R01 GM086610, pilot project funding from Michigan Drug Discovery, and start-up funds from the University of Michigan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryoma Ohi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Solon, A., Ohi, R. (2022). Chemical Biology of Mitotic Spindle Assembly Motors. In: Hinchcliffe, E.H. (eds) Mitosis. Methods in Molecular Biology, vol 2415. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1904-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1904-9_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1903-2

  • Online ISBN: 978-1-0716-1904-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics