Skip to main content

Preparation of Trimethyl Chitosan-Based Polyelectrolyte Complexes for Peptide Subunit Vaccine Delivery

  • Protocol
  • First Online:
Bacterial Vaccines

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2414))

Abstract

A variety of delivery vehicles have been explored as adjuvanting/delivery platforms for peptide-based subunit vaccines. Polysaccharide-based systems have been found to be especially attractive due to their immune stimulating properties, biodegradability, biocompatibility, and low toxicity. Among them, chitosan and its derivatives are the most common cationic nanocarriers used for the delivery of antigens. Trimethyl chitosan (TMC) is a partially quaternized, water-soluble, and mucoadhesive derivative of chitosan. This chapter describes the preparation of a TMC-based polyelectrolyte complex as a delivery system for peptide subunit vaccines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nevagi RJ, Toth I, Skwarczynski M (2018) Peptide-based vaccines. In: Koutsopoulos S (ed) Peptide applications in biomedicine, biotechnology and bioengineering. Woodhead Publishing, Oxford

    Google Scholar 

  2. Skwarczynski M, Toth I (2016) Peptide-based synthetic vaccines. Chem Sci 7(2):842–854

    Article  CAS  Google Scholar 

  3. Bartlett S, Skwarczynski M, Toth I (2020) Lipids as activators of innate immunity in peptide vaccine delivery. Curr Med Chem 27(17):2887–2901

    Article  CAS  Google Scholar 

  4. Nevagi RJ, Skwarczynski M, Toth I (2019) Polymers for subunit vaccine delivery. Eur Polym J 114:397–410

    Article  CAS  Google Scholar 

  5. Fujita Y, Taguchi H (2011) Current status of multiple antigen-presenting peptide vaccine systems: application of organic and inorganic nanoparticles. Chem Cent J 5(1):48

    Article  CAS  Google Scholar 

  6. Skwarczynski M, Toth I (2014) Recent advances in peptide-based subunit nanovaccines. Nanomedicine 9:2657–2669

    Article  CAS  Google Scholar 

  7. Reddy ST, Van Der Vlies AJ, Simeoni E et al (2007) Exploiting lymphatic transport and complement activation in nanoparticle vaccines. Nat Biotechnol 25(10):1159–1164

    Article  CAS  Google Scholar 

  8. Henriksen-Lacey M, Christensen D, Bramwell VW et al (2011) Comparison of the depot effect and immunogenicity of liposomes based on dimethyldioctadecylammonium (DDA), 3β-[N-(N',N'-Dimethylaminoethane)carbomyl] cholesterol (DC-Chol), and 1,2-Dioleoyl-3-trimethylammonium propane (DOTAP): prolonged liposome retention. Mol Pharm 8(1):153–161

    Article  CAS  Google Scholar 

  9. Yang JR, Luo YC, Shibu MA et al (2019) Cell-penetrating peptides: efficient vectors for vaccine delivery. Curr Drug Deliv 16(5):430–443

    Article  CAS  Google Scholar 

  10. Hussein WM, Liu TY, Skwarczynski M et al (2014) Toll-like receptor agonists: a patent review (2011 - 2013). Expert Opin Ther Pat 24(4):453–470

    Article  CAS  Google Scholar 

  11. Zheng J, Gao S, Cui X et al (2019) Adjuvants and delivery systems based on polymeric nanoparticles for mucosal vaccines. Int J Pharm 572:118731

    Article  Google Scholar 

  12. Marasini N, Skwarczynski M, Toth I (2017) Intranasal delivery of nanoparticle-based vaccines. Ther Deliv 8(3):151–167

    Article  CAS  Google Scholar 

  13. Malonis RJ, Lai JR, Vergnolle O (2020) Peptide-based vaccines: current progress and future challenges. Chem Rev 120(6):3210–3229

    Article  CAS  Google Scholar 

  14. Sedaghat B, Stephenson R, Toth I (2014) Targeting the mannose receptor with mannosylated subunit vaccines. Curr Med Chem 21(30):3405–3418

    Article  CAS  Google Scholar 

  15. Li P, Wang F (2015) Polysaccharides: candidates of promising vaccine adjuvants. Drug Discov Ther 9(2):88–93

    Article  CAS  Google Scholar 

  16. Zhao L, Skwarczynski M, Toth I (2019) Polyelectrolyte-based platforms for the delivery of peptides and proteins. ACS Biomater Sci Eng 5(10):4937–4950

    Article  CAS  Google Scholar 

  17. Meka VS, Sing MKG, Pichika MR et al (2017) A comprehensive review on polyelectrolyte complexes. Drug Discov Today 22(11):1697–1706

    Article  CAS  Google Scholar 

  18. Li X, Min M, Du N et al (2013) Chitin, chitosan, and glycated chitosan regulate immune responses: the novel adjuvants for cancer vaccine. Clin Dev Immunol 2013:387023

    PubMed  PubMed Central  Google Scholar 

  19. Nevagi RJ, Dai W, Khalil ZG et al (2019) Structure-activity relationship of group a streptococcus lipopeptide vaccine candidates in trimethyl chitosan-based self-adjuvanting delivery system. Eur J Med Chem 179:100–108

    Article  CAS  Google Scholar 

  20. Marasini N, Ghaffar KA, Giddam AK et al (2017) Highly immunogenic trimethyl chitosan-based delivery system for intranasal lipopeptide vaccines against Group A Streptococcus. Curr Drug Deliv 14(5):701–708

    Article  CAS  Google Scholar 

  21. Jeong Y, Lee D, Choe K et al (2017) Polypeptide-based polyelectrolyte complexes overcoming the biological barriers of oral insulin delivery. J Indust Eng Chem 48:79–87

    Article  CAS  Google Scholar 

  22. Zhao L, Jin W, Cruz JG et al (2020) Development of polyelectrolyte complexes for the delivery of peptide-based subunit vaccines against group A Streptococcus. Nanomaterials (Basel) 10:823

    Article  CAS  Google Scholar 

  23. Marasini N, Giddam AK, Ghaffar KA et al (2016) Multilayer engineered nanoliposomes as a novel tool for oral delivery of lipopeptide-based vaccines against group A Streptococcus. Nanomedicine 11(10):1223–1236

    Article  CAS  Google Scholar 

  24. Polnok A, Borchard G, Verhoef JC et al (2004) Influence of methylation process on the degree of quaternization of N-trimethyl chitosan chloride. Eur J Pharm Biopharm 57(1):77–83

    Article  CAS  Google Scholar 

  25. Verheul RJ, Amidi M, Van Der Wal S et al (2008) Synthesis, characterization and in vitro biological properties of O-methyl free N,N,N-trimethylated chitosan. Biomaterials 29(27):3642–3649

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariusz Skwarczynski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zhao, L., Bashiri, S., Toth, I., Skwarczynski, M. (2022). Preparation of Trimethyl Chitosan-Based Polyelectrolyte Complexes for Peptide Subunit Vaccine Delivery. In: Bidmos, F., Bossé, J., Langford, P. (eds) Bacterial Vaccines. Methods in Molecular Biology, vol 2414. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1900-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1900-1_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1899-8

  • Online ISBN: 978-1-0716-1900-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics