Skip to main content

Zebrafish Xenograft Model to Study Human Cancer

  • Protocol
  • First Online:
Cancer Biomarkers

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2413))

Abstract

The zebrafish, Danio rerio, has been an important animal model for cancer research over the last decade. The capability of a high-throughput screen in zebrafish and a wide range of pharmacologically active compounds elicit physiological responses in zebrafish embryos comparable to those in mammalian systems, making zebrafish ideal for identifying clinically relevant drug targets and compounds that regulate tumor progression. The zebrafish model is suitable for patient-derived xenograft (pdx) and large-scale screening of lead compounds against specific malignancies. This established vertebrate model has many advantages, including fast response time, cost efficiency for drug testing, efficient manipulation of the host microenvironment by genetic tools, suitable for small molecule drug screening in high-throughput setting, easy maintenance, transparency for easy observation, high fecundity, and rapid generation time. The zebrafish model is a good alternative in vivo model to mammals for robust testing of drug candidates for cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Moshal KS, Ferri-Lagneau KF, Haider J, Pardhanani P, Leung T (2011) Discriminating different cancer cells using a zebrafish in vivo assay. Cancer 3(4):4102–4113. https://doi.org/10.3390/cancers3044102

    Article  Google Scholar 

  2. Moshal KS, Ferri-Lagneau KF, Leung T (2010) Zebrafish model: worth considering in defining tumor angiogenesis. Trends Cardiovasc Med 20(4):114–119. https://doi.org/10.1016/j.tcm.2010.10.001

    Article  CAS  PubMed  Google Scholar 

  3. Zhou R, Curry JM, Roy LD, Grover P, Haider J, Moore LJ, Wu ST, Kamesh A, Yazdanifar M, Ahrens WA, Leung T, Mukherjee P (2016) A novel association of neuropilin-1 and MUC1 in pancreatic ductal adenocarcinoma: role in induction of VEGF signaling and angiogenesis. Oncogene 35(43):5608–5618. https://doi.org/10.1038/onc.2015.516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lam SH, Wu YL, Vega VB, Miller LD, Spitsbergen J, Tong Y, Zhan H, Govindarajan KR, Lee S, Mathavan S, Murthy KR, Buhler DR, Liu ET, Gong Z (2006) Conservation of gene expression signatures between zebrafish and human liver tumors and tumor progression. Nat Biotechnol 24(1):73–75. https://doi.org/10.1038/nbt1169

    Article  CAS  PubMed  Google Scholar 

  5. Chen L, Groenewoud A, Tulotta C, Zoni E, Kruithof-de Julio M, van der Horst G, van der Pluijm G, Ewa Snaar-Jagalska B (2017) A zebrafish xenograft model for studying human cancer stem cells in distant metastasis and therapy response. Methods Cell Biol 138:471–496. https://doi.org/10.1016/bs.mcb.2016.10.009

    Article  CAS  PubMed  Google Scholar 

  6. Nicoli S, Ribatti D, Cotelli F, Presta M (2007) Mammalian tumor xenografts induce neovascularization in zebrafish embryos. Cancer Res 67(7):2927–2931. https://doi.org/10.1158/0008-5472.CAN-06-4268

    Article  CAS  PubMed  Google Scholar 

  7. Gabellini C, Gomez-Abenza E, Ibanez-Molero S, Tupone MG, Perez-Oliva AB, de Oliveira S, Del Bufalo D, Mulero V (2018) Interleukin 8 mediates bcl-xL-induced enhancement of human melanoma cell dissemination and angiogenesis in a zebrafish xenograft model. Int J Cancer 142(3):584–596. https://doi.org/10.1002/ijc.31075

    Article  CAS  PubMed  Google Scholar 

  8. Stoletov K, Montel V, Lester RD, Gonias SL, Klemke R (2007) High-resolution imaging of the dynamic tumor cell vascular interface in transparent zebrafish. Proc Natl Acad Sci U S A 104(44):17406–17411. https://doi.org/10.1073/pnas.0703446104

    Article  PubMed  PubMed Central  Google Scholar 

  9. Moore JC, Tang Q, Yordan NT, Moore FE, Garcia EG, Lobbardi R, Ramakrishnan A, Marvin DL, Anselmo A, Sadreyev RI, Langenau DM (2016) Single-cell imaging of normal and malignant cell engraftment into optically clear prkdc-null SCID zebrafish. J Exp Med 213(12):2575–2589. https://doi.org/10.1084/jem.20160378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tang Q, Moore JC, Ignatius MS, Tenente IM, Hayes MN, Garcia EG, Torres Yordan N, Bourque C, He S, Blackburn JS, Look AT, Houvras Y, Langenau DM (2016) Imaging tumour cell heterogeneity following cell transplantation into optically clear immune-deficient zebrafish. Nat Commun 7:10358. https://doi.org/10.1038/ncomms10358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Howe K, Clark MD, Torroja CF, Torrance J, Berthelot C, Muffato M, Collins JE, Humphray S, McLaren K, Matthews L, McLaren S, Sealy I, Caccamo M, Churcher C, Scott C, Barrett JC, Koch R, Rauch GJ, White S, Chow W, Kilian B, Quintais LT, Guerra-Assuncao JA, Zhou Y, Gu Y, Yen J, Vogel JH, Eyre T, Redmond S, Banerjee R, Chi J, Fu B, Langley E, Maguire SF, Laird GK, Lloyd D, Kenyon E, Donaldson S, Sehra H, Almeida-King J, Loveland J, Trevanion S, Jones M, Quail M, Willey D, Hunt A, Burton J, Sims S, McLay K, Plumb B, Davis J, Clee C, Oliver K, Clark R, Riddle C, Elliot D, Threadgold G, Harden G, Ware D, Begum S, Mortimore B, Kerry G, Heath P, Phillimore B, Tracey A, Corby N, Dunn M, Johnson C, Wood J, Clark S, Pelan S, Griffiths G, Smith M, Glithero R, Howden P, Barker N, Lloyd C, Stevens C, Harley J, Holt K, Panagiotidis G, Lovell J, Beasley H, Henderson C, Gordon D, Auger K, Wright D, Collins J, Raisen C, Dyer L, Leung K, Robertson L, Ambridge K, Leongamornlert D, McGuire S, Gilderthorp R, Griffiths C, Manthravadi D, Nichol S, Barker G, Whitehead S, Kay M, Brown J, Murnane C, Gray E, Humphries M, Sycamore N, Barker D, Saunders D, Wallis J, Babbage A, Hammond S, Mashreghi-Mohammadi M, Barr L, Martin S, Wray P, Ellington A, Matthews N, Ellwood M, Woodmansey R, Clark G, Cooper J, Tromans A, Grafham D, Skuce C, Pandian R, Andrews R, Harrison E, Kimberley A, Garnett J, Fosker N, Hall R, Garner P, Kelly D, Bird C, Palmer S, Gehring I, Berger A, Dooley CM, Ersan-Urun Z, Eser C, Geiger H, Geisler M, Karotki L, Kirn A, Konantz J, Konantz M, Oberlander M, Rudolph-Geiger S, Teucke M, Lanz C, Raddatz G, Osoegawa K, Zhu B, Rapp A, Widaa S, Langford C, Yang F, Schuster SC, Carter NP, Harrow J, Ning Z, Herrero J, Searle SM, Enright A, Geisler R, Plasterk RH, Lee C, Westerfield M, de Jong PJ, Zon LI, Postlethwait JH, Nusslein-Volhard C, Hubbard TJ, Roest Crollius H, Rogers J, Stemple DL (2013) The zebrafish reference genome sequence and its relationship to the human genome. Nature 496(7446):498–503. https://doi.org/10.1038/nature12111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ridges S, Heaton WL, Joshi D, Choi H, Eiring A, Batchelor L, Choudhry P, Manos EJ, Sofla H, Sanati A, Welborn S, Agarwal A, Spangrude GJ, Miles RR, Cox JE, Frazer JK, Deininger M, Balan K, Sigman M, Muschen M, Perova T, Johnson R, Montpellier B, Guidos CJ, Jones DA, Trede NS (2012) Zebrafish screen identifies novel compound with selective toxicity against leukemia. Blood 119(24):5621–5631. https://doi.org/10.1182/blood-2011-12-398818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Harrison NR, Laroche FJ, Gutierrez A, Feng H (2016) Zebrafish models of human leukemia: technological advances and mechanistic insights. Adv Exp Med Biol 916:335–369. https://doi.org/10.1007/978-3-319-30654-4_15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Deveau AP, Bentley VL, Berman JN (2017) Using zebrafish models of leukemia to streamline drug screening and discovery. Exp Hematol 45:1–9. https://doi.org/10.1016/j.exphem.2016.09.012

    Article  CAS  PubMed  Google Scholar 

  15. Lu JW, Hsieh MS, Liao HA, Yang YJ, Ho YJ, Lin LI (2015) Zebrafish as a model for the study of human myeloid malignancies. Biomed Res Int 2015:641475. https://doi.org/10.1155/2015/641475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang B, Shimada Y, Kuroyanagi J, Umemoto N, Nishimura Y, Tanaka T (2014) Quantitative phenotyping-based in vivo chemical screening in a zebrafish model of leukemia stem cell xenotransplantation. PLoS One 9(1):e85439. https://doi.org/10.1371/journal.pone.0085439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zon LI, Peterson RT (2005) In vivo drug discovery in the zebrafish. Nat Rev Drug Discov 4(1):35–44. https://doi.org/10.1038/nrd1606

    Article  CAS  PubMed  Google Scholar 

  18. He S, Lamers GE, Beenakker JW, Cui C, Ghotra VP, Danen EH, Meijer AH, Spaink HP, Snaar-Jagalska BE (2012) Neutrophil-mediated experimental metastasis is enhanced by VEGFR inhibition in a zebrafish xenograft model. J Pathol 227(4):431–445. https://doi.org/10.1002/path.4013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are grateful to Ms. Xiaoyan Huang, Ms. Chunyu Xu, and Mr. Jamil Haider for technical assistance in zebrafish experiments. This work was partially supported by funding from the University of North Carolina System, grants U54CA156735 from NIH/NCI, and U54MD012392 from NIH/NIMHD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to TinChung Leung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Somasagara, R.R., Leung, T. (2022). Zebrafish Xenograft Model to Study Human Cancer. In: Deep, G. (eds) Cancer Biomarkers. Methods in Molecular Biology, vol 2413. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1896-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1896-7_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1895-0

  • Online ISBN: 978-1-0716-1896-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics