Skip to main content

PET Use in Cancer Diagnosis, Treatment, and Prognosis

  • Protocol
  • First Online:
Cancer Biomarkers

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2413))

Abstract

Tumorigenesis is a multistep process marked by variations in numerous metabolic pathways that affect cellular architectures and functions. Cancer cells reprogram their energy metabolism to enable several basic molecular functions, including membrane biosynthesis, receptor regulations, bioenergetics, and redox stress. In recent years, cancer diagnosis and treatment strategies have targeted these specific metabolic changes and the tumor’s interactions with its microenvironment. Positron emission tomography (PET) captures all molecular alterations leading to abnormal function and cancer progression. As a result, the development of PET radiotracers increasingly focuses on irregular biological pathways or cells that overexpress receptors that have the potential to function as biomarkers for early diagnosis and treatment measurements as well as research. This chapter reviews both established and evolving PET radiotracers used to image tumor biology. We have also included a few advantages and disadvantages of the routinely used PET radiotracers in cancer imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mettler FA Jr, Guiberteau MJ (2012) Essentials of nuclear medicine imaging: expert consult-online and print. Elsevier Health Sciences, Amsterdam

    Google Scholar 

  2. Lewis DY, Soloviev D, Brindle KM (2015) Imaging tumor metabolism using positron emission tomography. Cancer J 21(2):129–136. https://doi.org/10.1097/PPO.0000000000000105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Abrantes AM, Pires AS, Monteiro L, Teixo R, Neves AR, Tavares NT, Marques IA, Botelho MF (1866) Tumour functional imaging by PET. Biochim Biophys Acta (BBA) - Mol Basis Dis 2020(6):165717. https://doi.org/10.1016/j.bbadis.2020.165717

    Article  CAS  Google Scholar 

  4. Doot RK, McDonald ES, Mankoff DA (2014) Role of PET quantitation in the monitoring of cancer response to treatment: review of approaches and human clinical trials. Clin Transl Imaging 2(4):295–303. https://doi.org/10.1007/s40336-014-0071-1

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kadrmas DJ, Hoffman JM (2013) Methodology for quantitative rapid multi-tracer PET tumor characterizations. Theranostics 3(10):757–773. https://doi.org/10.7150/thno.5201

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kurdziel K, Ravizzini G, Croft B, Tatum J, Choyke P, Kobayashi H (2008) The evolving role of nuclear molecular imaging in cancer. Expert Opin Med Diagn 2(7):829–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jang B-S (2013) MicroSPECT and MicroPET imaging of small animals for drug development. Toxicol Res 29(1):1–6. https://doi.org/10.5487/TR.2013.29.1.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang YY, Wang K, Xu ZY, Song Y, Wang CN, Zhang CQ, Sun XL, Shen BZ (2017) High-resolution dynamic imaging and quantitative analysis of lung cancer xenografts in nude mice using clinical PET/CT. Oncotarget 8(32):52802–52812. https://doi.org/10.18632/oncotarget.17263

    Article  PubMed  PubMed Central  Google Scholar 

  9. Koba W, Jelicks LA, Fine EJ (2013) MicroPET/SPECT/CT imaging of small animal models of disease. Am J Pathol 182(2):319–324. https://doi.org/10.1016/j.ajpath.2012.09.025

    Article  CAS  PubMed  Google Scholar 

  10. Kumar Solingapuram Sai K, Sattiraju A, Almaguel FG, Xuan A, Rideout S, Krishnaswamy RS, Zhang J, Herpai DM, Debinski W, Mintz A (2017) Peptide-based PET imaging of the tumor restricted IL13RA2 biomarker. Oncotarget 8(31):50997

    Article  Google Scholar 

  11. Shukla AK, Kumar U (2006) Positron emission tomography: an overview. J Med Phys 31(1):13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Vallabhajosula S (2007) 18F-labeled positron emission tomographic radiopharmaceuticals in oncology: an overview of radiochemistry and mechanisms of tumor localization. Semin Nucl Med 6:400–419

    Article  Google Scholar 

  13. Chen Z-Y, Wang Y-X, Lin Y, Zhang J-S, Yang F, Zhou Q-L, Liao Y-Y (2014) Advance of molecular imaging technology and targeted imaging agent in imaging and therapy. Biomed Res Int 2014:819324

    PubMed  PubMed Central  Google Scholar 

  14. Gambhir SS (2002) Molecular imaging of cancer with positron emission tomography. Nat Rev Cancer 2(9):683–693. https://doi.org/10.1038/nrc882

    Article  CAS  PubMed  Google Scholar 

  15. Lukey MJ, Katt WP, Cerione RA (2017) Targeting amino acid metabolism for cancer therapy. Drug Discov Today 22(5):796–804

    Article  CAS  PubMed  Google Scholar 

  16. Challapalli A, Aboagye EO (2016) Positron emission tomography imaging of tumor cell metabolism and application to therapy response monitoring. Front Oncol 6:44–44. https://doi.org/10.3389/fonc.2016.00044

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bensinger SJ, Christofk HR (2012) New aspects of the Warburg effect in cancer cell biology. Semin Cell Dev Biol 4:352–361

    Article  Google Scholar 

  18. Toyama H, Ichise M, Liow J-S, Modell KJ, Vines DC, Esaki T, Cook M, Seidel J, Sokoloff L, Green MV, Innis RB (2004) Absolute quantification of regional cerebral glucose utilization in mice by 18F-FDG small animal PET scanning and 2-14C-DG autoradiography. J Nucl Med 45(8):1398–1405

    CAS  PubMed  Google Scholar 

  19. Almuhaideb A, Papathanasiou N, Bomanji J (2011) 18F-FDG PET/CT imaging in oncology. Ann Saudi Med 31(1):3–13. https://doi.org/10.4103/0256-4947.75771

    Article  PubMed  PubMed Central  Google Scholar 

  20. McNeill KA (2016) Epidemiology of brain tumors. Neurol Clin 34(4):981–998

    Article  PubMed  Google Scholar 

  21. Giammarile F, Castellucci P, Dierckx R, Estrada Lobato E, Farsad M, Hustinx R, Jalilian A, Pellet O, Rossi S, Paez D (2019) Non-FDG PET/CT in diagnostic oncology: a pictorial review. Eur J Hybrid Imaging 3(1):20. https://doi.org/10.1186/s41824-019-0066-2

    Article  PubMed  PubMed Central  Google Scholar 

  22. Jadvar H (2016) PET of glucose metabolism and cellular proliferation in prostate cancer. J Nucl Med 57(suppl 3):25S

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mansoor NM, Thust S, Militano V, Fraioli F (2018) PET imaging in glioma: techniques and current evidence. Nucl Med Commun 39(12):1064

    Article  PubMed  Google Scholar 

  24. Salmon E, Ir CB, Hustinx R (2015) Pitfalls and limitations of PET/CT in brain imaging. Semin Nucl Med 6:541–551

    Article  Google Scholar 

  25. Mullen KM, Huang RY (2017) An update on the approach to the imaging of brain tumors. Curr Neurol Neurosci Rep 17(7):53

    Article  PubMed  Google Scholar 

  26. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424

    Article  PubMed  Google Scholar 

  27. Xu KM, Chen RC, Schuster DM, Jani AB (2019) Role of novel imaging in the management of prostate cancer. Urol Oncol 37:611

    Article  PubMed  Google Scholar 

  28. Wallitt KL, Khan SR, Dubash S, Tam HH, Khan S, Barwick TD (2017) Clinical PET imaging in prostate cancer. Radiographics 37(5):1512–1536

    Article  PubMed  Google Scholar 

  29. Jadvar H (2009) FDG PET in prostate cancer. PET Clin 4(2):155–161

    Article  PubMed  PubMed Central  Google Scholar 

  30. Evans JD, Jethwa KR, Ost P, Williams S, Kwon ED, Lowe VJ, Davis BJ (2018) Prostate cancer–specific PET radiotracers: a review on the clinical utility in recurrent disease. Pract Radiat Oncol 8(1):28–39

    Article  PubMed  Google Scholar 

  31. Lemjabbar-Alaoui H, Hassan OU, Yang Y-W, Buchanan P (2015) Lung cancer: biology and treatment options. Biochim Biophys Acta 1856(2):189–210

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Postmus P, Kerr K, Oudkerk M, Senan S, Waller D, Vansteenkiste J, Escriu C, Peters S (2017) Early and locally advanced non-small-cell lung cancer (NSCLC): ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 28(suppl_4):iv1–iv21

    Article  CAS  PubMed  Google Scholar 

  33. Greenspan BS (2017) Role of PET/CT for precision medicine in lung cancer: perspective of the Society of Nuclear Medicine and Molecular Imaging. Transl Lung Cancer Res 6(6):617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Volpi S, Ali JM, Tasker A, Peryt A, Aresu G, Coonar AS (2018) The role of positron emission tomography in the diagnosis, staging and response assessment of non-small- cell lung cancer. Ann Transl Med 6(5):95

    Article  PubMed  PubMed Central  Google Scholar 

  35. Massarweh NN, El-Serag HB (2017) Epidemiology of hepatocellular carcinoma and intrahepatic cholangiocarcinoma. Cancer Control 24(3):1073274817729245

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kolthammer JA, Corn DJ, Tenley N, Wu C, Tian H, Wang Y, Lee Z (2011) PET imaging of hepatocellular carcinoma with 18 F-fluoroethylcholine and 11 C-choline. Eur J Nucl Med Mol Imaging 38(7):1248–1256

    Article  CAS  PubMed  Google Scholar 

  37. Lee SM, Kim HS, Lee S, Lee JW (2019) Emerging role of 18F-fluorodeoxyglucose positron emission tomography for guiding management of hepatocellular carcinoma. World J Gastroenterol 25(11):1289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dubash SR, Idowu OA, Sharma R (2015) The emerging role of positron emission tomography in hepatocellular carcinoma. Hepat Oncol 2(2):191–200

    Article  PubMed  PubMed Central  Google Scholar 

  39. Smith G, Carroll L, Aboagye EO (2012) New frontiers in the design and synthesis of imaging probes for PET oncology: current challenges and future directions. Mol Imaging Biol 14(6):653–666

    Article  PubMed  Google Scholar 

  40. Kiran Kumar Solingapuram S, Lynne AJ, Robert HM (2013) Development of 18F-labeled PET probes for imaging cell proliferation. Curr Topics Med Chem 13(8):892–908. https://doi.org/10.2174/1568026611313080003

    Article  Google Scholar 

  41. Liu H, Chen Y, Wu S, Song F, Zhang H, Tian M (2016) Molecular imaging using PET and SPECT for identification of breast cancer subtypes. Nucl Med Commun 37(11):1116–1124

    Article  PubMed  Google Scholar 

  42. J-h J, Ahn B-C (2018) Current radiopharmaceuticals for positron emission tomography of brain tumors. Brain Tumor Res Treat 6(2):47–53

    Article  Google Scholar 

  43. Solingapuram Sai KK, Jones L, Mach R (2013) Development of F-18-labeled PET probes for imaging cell proliferation. Curr Top Med Chem 13:892–908

    Article  Google Scholar 

  44. Al Tameemi W, Dale TP, Al-Jumaily RMK, Forsyth NR (2019) Hypoxia-modified cancer cell metabolism. Front Cell Dev Biol 7:4

    Article  PubMed  PubMed Central  Google Scholar 

  45. Xu Z, Li X-F, Zou H, Sun X, Shen B (2017) (18)F-Fluoromisonidazole in tumor hypoxia imaging. Oncotarget 8(55):94969–94979. https://doi.org/10.18632/oncotarget.21662

    Article  PubMed  PubMed Central  Google Scholar 

  46. Haubner R, Wester H-J, Weber WA, Mang C, Ziegler SI, Goodman SL, Senekowitsch-Schmidtke R, Kessler H, Schwaiger M (2001) Noninvasive imaging of αvβ3 integrin expression using 18F-labeled RGD-containing glycopeptide and positron emission tomography. Cancer Res 61(5):1781–1785

    CAS  PubMed  Google Scholar 

  47. Beer AJ, Haubner R, Sarbia M, Goebel M, Luderschmidt S, Grosu AL, Schnell O, Niemeyer M, Kessler H, Wester H-J (2006) Positron emission tomography using [18F] Galacto-RGD identifies the level of integrin αvβ3 expression in man. Clin Cancer Res 12(13):3942–3949

    Article  CAS  PubMed  Google Scholar 

  48. Solingapuram Sai KK, Bashetti N, Chen X, Norman S, Hines JW, Meka O, Kumar JVS, Devanathan S, Deep G, Furdui CM, Mintz A (2019) Initial biological evaluations of 18F-KS1, a novel ascorbate derivative to image oxidative stress in cancer. EJNMMI Res 9(1):43. https://doi.org/10.1186/s13550-019-0513-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tachibana I, Nishimura Y, Hanaoka K, Inada M, Fukuda K, Tatebe H, Ishikawa K, Nakamatsu K, Kanamori S, Hosono M (2018) Tumor hypoxia detected by 18F-fluoromisonidazole positron emission tomography (FMISO PET) as a prognostic indicator of radiotherapy (RT). Anticancer Res 38(3):1775–1781

    CAS  PubMed  Google Scholar 

  50. Calabria F, Cascini GL (2015) Current status of 18F-DOPA PET imaging in the detection of brain tumor recurrence. Hell J Nucl Med 18(2):152–156

    PubMed  Google Scholar 

  51. Peyraga G, Robaine N, Khalifa J, Cohen-Jonathan-Moyal E, Payoux P, Laprie A (2018) Molecular PET imaging in adaptive radiotherapy: brain. Q J Nucl Med Mol Imaging 62(4):337–348

    Article  PubMed  Google Scholar 

  52. Fink JR, Muzi M, Peck M, Krohn KA (2015) Multimodality brain tumor imaging: MR imaging, PET, and PET/MR imaging. J Nucl Med 56(10):1554–1561

    Article  CAS  PubMed  Google Scholar 

  53. Wise DR, Thompson CB (2010) Glutamine addiction: a new therapeutic target in cancer. Trends Biochem Sci 35(8):427–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kubota K, Yamada K, Fukada H, Endo S, Ito M, Abe Y, Yamaguchi T, Fujiwara T, Sato T, Ito K (1984) Tumor detection with carbon-11-labelled amino acids. Eur J Nucl Med 9(3):136–140

    Article  CAS  PubMed  Google Scholar 

  55. Hsieh H-J, Lin S-H, Lin K-H, Lee C-Y, Chang C-P, Wang S-J (2008) The feasibility of 11 C-methionine-PET in diagnosis of solitary lung nodules/masses when compared with 18 F-FDG-PET. Ann Nucl Med 22(6):533

    Article  PubMed  Google Scholar 

  56. Humbert O, Bourg V, Mondot L, Gal J, Bondiau P-Y, Fontaine D, Saada-Bouzid E, Paquet M, Chardin D, Almairac F (2019) 18 F-DOPA PET/CT in brain tumors: impact on multidisciplinary brain tumor board decisions. Eur J Nucl Med Mol Imaging 46(3):558–568

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Authors acknowledge funding from the National Institute of Health: R01AG0658389-01 (to KKSS) and Wake Forest Center of Redox Biology and Medicine: P30CA012197(KKSS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiran Kumar Solingapuram Sai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Damuka, N., Dodda, M., Solingapuram Sai, K.K. (2022). PET Use in Cancer Diagnosis, Treatment, and Prognosis. In: Deep, G. (eds) Cancer Biomarkers. Methods in Molecular Biology, vol 2413. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1896-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1896-7_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1895-0

  • Online ISBN: 978-1-0716-1896-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics