Skip to main content

Polymer–Peptide Conjugate Vaccine for Oral Immunization

  • Protocol
  • First Online:
Vaccine Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2412))

Abstract

The copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction, well-known as “click” reaction, is widely used in organic synthesis, medicinal chemistry, and polymer science for the conjugation of molecular entities of all sizes. In this protocol, B-cell epitope J8, derived from group A Streptococcus (GAS) M protein, and universal T-helper epitope PADRE were conjugated to poly(methyl acrylate) (PMA) to form a self-assembled nanoparticle vaccine candidate (PMA-P-J8). The vaccine construct was orally administered to mice in a single dose of 30 μg, resulting in the production of a high number of serum (IgG) and salivary (IgA) antibodies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Nevagi RJ, Toth I, Skwarczynski M (2018) Peptide-based vaccines, peptide applications in biomedicine, biotechnology and bioengineering. Elsevier, Amsterdam, pp 327–358

    Book  Google Scholar 

  2. Ren Q, Xiong H, Li Y, Xu R, Zhu C (2009) Evaluation of an outside-the-cold-chain vaccine delivery strategy in remote regions of western China. Public Health Rep 124(5):745–750

    Article  Google Scholar 

  3. Skwarczynski M, Toth I (2016) Peptide-based synthetic vaccines. Chem Sci 7(2):842–854

    Article  CAS  Google Scholar 

  4. Azmi F, Ahmad Fuaad AAH, Skwarczynski M, Toth I (2014) Recent progress in adjuvant discovery for peptide-based subunit vaccines. Hum Vaccin Immunother 10(3):778–796

    Article  CAS  Google Scholar 

  5. Marasini N, Giddam AK, Ghaffar KA, Batzloff MR, Good MF, Skwarczynski M, Toth IJN (2016) Multilayer engineered nanoliposomes as a novel tool for oral delivery of lipopeptide-based vaccines against group A Streptococcus. Nanomedicine 11(10):1223–1236

    Article  CAS  Google Scholar 

  6. Skwarczynski M, Zhao G, Boer JC, Ozberk V, Azuar A, Cruz JG, Giddam AK, Khalil ZG, Pandey M, Shibu MA (2020) Poly (amino acids) as a potent self-adjuvanting delivery system for peptide-based nanovaccines. Sci Adv 6(5):eaax2285

    Article  CAS  Google Scholar 

  7. Skwarczynski M, Toth I (2014) Recent advances in peptide-based subunit nanovaccines. Nanomedicine 9:2657–2669

    Article  CAS  Google Scholar 

  8. Zhao L, Skwarczynski M, Toth I (2019) Polyelectrolyte-based platforms for the delivery of peptides and proteins. ACS Biomater Sci Eng 5(10):4937–4950

    Article  CAS  Google Scholar 

  9. Zhao L, Jin W, Cruz JG, Marasini N, Khalil ZG, Capon RJ, Hussein WM, Skwarczynski M, Toth I (2020) Development of polyelectrolyte complexes for the delivery of peptide-based subunit vaccines against group A streptococcus. Nanomaterials 10:823. https://doi.org/10.3390/nano10050823

    Article  CAS  PubMed Central  Google Scholar 

  10. Wu Y, Wei W, Zhou M, Wang Y, Wu J, Ma G, Su Z (2012) Thermal-sensitive hydrogel as adjuvant-free vaccine delivery system for H5N1 intranasal immunization. Biomaterials 33(7):2351–2360

    Article  CAS  Google Scholar 

  11. O’Hagan DT (1998) Microparticles and polymers for the mucosal delivery of vaccines. Adv Drug Deliv Rev 34(2-3):305–320

    Article  Google Scholar 

  12. Eyles J, Carpenter Z, Alpar H, Williamson E (2003) Immunological aspects of polymer microsphere vaccine delivery systems. J Drug Target 11(8-10):509–514

    Article  CAS  Google Scholar 

  13. Skwarczynski M, Toth I (2020) Non-invasive mucosal vaccine delivery: advantages, challenges and the future. Taylor & Francis, Milton Park, Abingdon-on-Thames

    Google Scholar 

  14. Vela Ramirez JE, Sharpe LA, Peppas NA (2017) Current state and challenges in developing oral vaccines. Adv Drug Deliv Rev 114:116–131

    Article  CAS  Google Scholar 

  15. Marasini N, Skwarczynski M, Toth I (2014) Oral delivery of nanoparticle-based vaccines. Expert Rev Vaccines 13(11):1361–1376

    Article  CAS  Google Scholar 

  16. Watkins DA, Johnson CO, Colquhoun SM, Karthikeyan G, Beaton A, Bukhman G, Forouzanfar MH, Longenecker CT, Mayosi BM, Mensah GA (2017) Global, regional, and national burden of rheumatic heart disease, 1990–2015. N Engl J Med 377(8):713–722

    Article  Google Scholar 

  17. Azuar A, Jin W, Mukaida S, Hussein WM, Toth I, Skwarczynski M (2019) Recent advances in the development of peptide vaccines and their delivery systems against group a streptococcus. Vaccines (Basel) 7(3):58

    Article  CAS  Google Scholar 

  18. Faruck MO, Zhao L, Hussein WM, Khalil ZG, Capon RJ, Skwarczynski M, Toth IJV (2020) Polyacrylate–peptide antigen conjugate as a single-dose oral vaccine against Group A Streptococcus. Vaccines (Basel) 8(1):23

    Article  CAS  Google Scholar 

  19. Dai C, Stephenson RJ, Skwarczynski M, Toth I (2020) Application of Fmoc-SPPS, thiol-Maleimide conjugation, and copper (I)-catalyzed alkyne-Azide cycloaddition “click” reaction in the synthesis of a complex peptide-based vaccine candidate against group a streptococcus, peptide synthesis. Springer, New York, pp 13–27

    Google Scholar 

  20. Amblard M, Fehrentz J-A, Martinez J, Subra G (2006) Methods and protocols of modern solid phase peptide synthesis. Mol Biotechnol 33(3):239–254

    Article  CAS  Google Scholar 

  21. Fuaad AAA, Skwarczynski M, Toth I (2016) The use of microwave-assisted solid-phase peptide synthesis and click chemistry for the synthesis of vaccine candidates against hookworm infection, vaccine design. Springer, New York, pp 639–653

    Google Scholar 

  22. Lin AV (2015) Indirect ELISA. In: Hnasko R (ed) ELISA: methods and protocols. Springer New York, New York, NY, pp 51–59

    Chapter  Google Scholar 

  23. Hussein WM, Liu TY, Jia Z, McMillan NA, Monteiro MJ, Toth I, Skwarczynski M (2016) Multiantigenic peptide-polymer conjugates as therapeutic vaccines against cervical cancer. Bioorg Med Chem 24(18):4372–4380

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariusz Skwarczynski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Faruck, M.O., Skwarczynski, M., Toth, I. (2022). Polymer–Peptide Conjugate Vaccine for Oral Immunization. In: Thomas, S. (eds) Vaccine Design. Methods in Molecular Biology, vol 2412. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1892-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1892-9_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1891-2

  • Online ISBN: 978-1-0716-1892-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics