Skip to main content

Cationic Nanostructures as Adjuvants for Vaccines

  • Protocol
  • First Online:
Vaccine Design

Abstract

Spherical or discoidal lipid polymer nanostructures bearing cationic charges successfully adsorb a variety of oppositely charged antigens (Ag) such as proteins, peptides, nucleic acids, or oligonucleotides. This report provides instructions for the preparation and physical characterization of four different cationic nanostructures able to combine and deliver antigens to the immune system: (1) dioctadecyl dimethylammonium bromide (DODAB) bilayer fragments (DODAB BF); (2) polystyrene sulfate (PSS) nanoparticles (NPs) covered with one cationic dioctadecyl dimethylammonium bromide bilayer (DODAB) named (PSS/DODAB); (3) cationic NPs of biocompatible polymer poly(methyl methacrylate) (PMMA) prepared by emulsion polymerization of the methyl methacrylate (MMA) monomer in the presence of DODAB BF (PMMA/DODAB NPs); (4) antigen NPs (NPs) where the cationic polymer poly(diallyl dimethyl ammonium chloride) (PDDA) directly combined at nontoxic and low dose with the antigen (Ag); when the oppositely charged model antigen is ovalbumin (OVA), NPs are named PDDA/OVA. These nanostructures provide adequate microenvironments for carrying and delivering antigens to the antigen-presenting cells of the immune system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xiang SD, Scholzen A, Minigo G, David C et al (2006) Pathogen recognition and development of particulate vaccines: does size matter? Methods 40:1–9. https://doi.org/10.1016/j.ymeth.2006.05.016

    Article  CAS  PubMed  Google Scholar 

  2. Manolova V, Flace A, Bauer M et al (2008) NPs target distinct dendritic cell populations according to their size. Eur J Immunol 38:1404–1413. https://doi.org/10.1002/eji.200737984

    Article  CAS  PubMed  Google Scholar 

  3. Tsuruta LR, Quintilio W, Costa MH et al (1997) Interactions between cationic liposomes and an antigenic protein: the physical chemistry of the immunoadjuvant action. J Lipid Res 38:2003–2011. https://www.jlr.org/content/38/10/2003.long

    Article  CAS  Google Scholar 

  4. Carmona-Ribeiro AM (2006) Lipid bilayer fragments and disks in drug delivery. Curr Med Chem 13:1359–1370. https://doi.org/10.2174/092986706776872925

    Article  CAS  PubMed  Google Scholar 

  5. Lincopan N, Espindola NM, Vaz AJ et al (2009) Novel immunoadjuvants based on cationic lipid: preparation, characterization and activity in vivo. Vaccine 27:5760–5771. https://doi.org/10.1016/j.vaccine.2009.07.066

    Article  CAS  PubMed  Google Scholar 

  6. Rozenfeld JHK, Silva SR, Raneia PA et al (2012) Stable assemblies of cationic bilayer fragments and CpG oligonucleotide with enhanced immunoadjuvant activity in vivo. J Control Release 160:367–373. https://doi.org/10.1016/j.jconrel.2011.10.017

    Article  CAS  PubMed  Google Scholar 

  7. Lincopan N, Espindola NM, Vaz AJ et al (2007) Cationic supported lipid bilayers for antigen presentation. Int J Pharm 340:216–222. https://doi.org/10.1016/j.ijpharm.2007.03.014

    Article  CAS  PubMed  Google Scholar 

  8. Naves AF, Palombo RR, Carrasco LDM et al (2013) Antimicrobial particles from emulsion polymerization of methyl methacrylate in the presence of quaternary ammonium surfactants. Langmuir 29:9677–9684. https://doi.org/10.1021/la401527j

    Article  CAS  PubMed  Google Scholar 

  9. Carmona-Ribeiro AM (2014) Cationic nanostructures for vaccines. In: Guy Huynh Thien Duc GHT (ed) Immune response activation, 1st edn. IntechOpen, Rijeka, pp 1–45. https://www.intechopen.com/books/immune-response-activation/cationic-nanostructures-for-vaccines

  10. Sanches LM, Petri DFS, de Melo Carrasco LD et al (2015) The antimicrobial activity of free and immobilized poly (diallyldimethylammonium) chloride in NPs of poly (methylmethacrylate). J Nanobiotechnol 13:58. https://jnanobiotechnology.biomedcentral.com/articles/10.1186/s12951-015-0123-3

    Article  Google Scholar 

  11. Xavier GRS, Carmona-Ribeiro AM (2017) Cationic biomimetic particles of polystyrene/cationic bilayer/gramicidin for optimal bactericidal activity. Nanomaterials 7:12. https://doi.org/10.3390/nano7120422

    Article  CAS  Google Scholar 

  12. Carmona-Ribeiro AM (2017) Nanomaterials based on lipids for vaccine development. In: Skwarczynski M, Toth I (eds) Micro- and nano-technology in vaccine development. Elsevier, Oxford, pp 241–257. https://doi.org/10.1016/B978-0-323-39981-4.00013-0

    Chapter  Google Scholar 

  13. Perez-Betancourt Y, Tavora BCLF, Colombini M et al (2020) Simple nanoparticles from the assembly of cationic polymer and antigen as immunoadjuvants. Vaccine 8:105. https://doi.org/10.3390/vaccines8010105

    Article  CAS  Google Scholar 

  14. Mathiazzi BI, Carmona-Ribeiro AM (2020) Hybrid NPs of poly (methyl methacrylate) and antimicrobial quaternary ammonium surfactants. Pharmaceutics 12:340. https://doi.org/10.3390/pharmaceutics12040340

    Article  CAS  PubMed Central  Google Scholar 

  15. Carmona-Ribeiro AM, Pérez-Betancourt Y (2020) Cationic nanostructures for vaccines design. Biomimetics 5:32. https://doi.org/10.3390/biomimetics5030032

    Article  CAS  PubMed Central  Google Scholar 

  16. Ribeiro AMC, Chaimovich H (1983) Preparation and characterization of large dioctadecyldimethylammonium chloride liposomes and comparison with small sonicated vesicles. Biochim Biophys Acta 733:172–179. https://doi.org/10.1016/0005-2736(83)90103-7

    Article  CAS  PubMed  Google Scholar 

  17. Carmona-Ribeiro AM (1992) Synthetic amphiphile vesicles. Chem Soc Rev 21:209–214. https://doi.org/10.1039/CS9922100209

    Article  CAS  Google Scholar 

  18. Carmona-Ribeiro AM, Chaimovich H (1986) Salt-induced aggregation and fusion of dioctadecyldimethylammonium chloride and sodium dihexadecylphosphate vesicles. Biophys J 50:621–628. https://doi.org/10.1016/S0006-3495(86)83501-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Carvalho LA, Carmona-Ribeiro AM (1998) Interactions between cationic vesicles and serum proteins. Langmuir 14:6077–6081. https://doi.org/10.1021/la980345j

    Article  CAS  Google Scholar 

  20. Lincopan N, Carmona-Ribeiro AM (2009) Protein assembly onto cationic supported bilayers. J Nanosci Nanotechnol 9:3578–3586. https://doi.org/10.1166/jnn.2009.NS33

    Article  CAS  PubMed  Google Scholar 

  21. Carvalho CA, Olivares-Ortega C, Soto-Arriaza MA, Carmona-Ribeiro AM (2012) Interaction of gramicidin with DPPC/DODAB bilayer fragments. Biochim Biophys Acta 1818:3064–3071. https://doi.org/10.1016/j.bbamem.2012.08.008

    Article  CAS  PubMed  Google Scholar 

  22. Ragioto DAMT, Carrasco LDM, Carmona-Ribeiro AM (2014) Novel gramicidin formulations in cationic lipid as broad-spectrum microbicidal agents. Int J Nanomedicine 9:3183–3192. https://doi.org/10.2147/IJN.S65289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rozenfeld JHK, Oliveira TR, Lamy MT et al (2011) Interaction of cationic bilayer fragments with a model oligonucleotide. Biochim Biophys Acta 1808:649–655. https://doi.org/10.1016/j.bbamem.2010.11.036

    Article  CAS  PubMed  Google Scholar 

  24. Kikuchi IS, Viviani W, Carmona-Ribeiro AM (1999) Nucleotide insertion in cationic bilayers. J Phys Chem A 103:8050–8055. https://doi.org/10.1021/jp9911090

    Article  CAS  Google Scholar 

  25. Nantes IL, Correia FM, Faljoni-Alario A et al (2003) Nucleotide conformational change induced by cationic bilayers. Arch Biochem Biophys 416:25–30. https://doi.org/10.1016/S0003-9861(03)00280-7

    Article  CAS  PubMed  Google Scholar 

  26. Rosa H, Petri DFS, Carmona-Ribeiro AM (2008) Interactions between bacteriophage DNA and cationic biomimetic particles. J Phys Chem B 112:16422–16430. https://doi.org/10.1021/jp806992f

    Article  CAS  PubMed  Google Scholar 

  27. Kikuchi IS, Carmona-Ribeiro AM (2000) Interactions between DNA and synthetic cationic liposomes. J Phys Chem B 104:2829–2835. https://doi.org/10.1021/jp9935891

    Article  CAS  Google Scholar 

  28. Andersson M, Hammarstroem L, Edwards K (1995) Effect of bilayer phase transitions on vesicle structure, and its influence on the kinetics of viologen reduction. J Phys Chem 99:14531–14538. https://doi.org/10.1021/j100039a047

    Article  CAS  Google Scholar 

  29. Carmona-Ribeiro AM, Midmore BR (1992) Synthetic bilayer adsorption onto polystyrene microspheres. Langmuir 8:801–806. https://doi.org/10.1021/la00039a013

    Article  CAS  Google Scholar 

  30. Carmona-Ribeiro AM, de Moraes LM (1999) Interactions between bilayer membranes and latex. Colloids Surf A Physicochem Eng Asp 153:355–361. https://doi.org/10.1016/S0927-7757(98)00532-9

    Article  CAS  Google Scholar 

  31. Pereira EMA, Vieira DB, Carmona-Ribeiro AM (2004) Cationic bilayers on polymeric particles: effect of low NaCl concentration on surface coverage. J Phys Chem B 108:11490–11495. https://doi.org/10.1021/jp060737w

    Article  CAS  Google Scholar 

  32. Rapuano R, Carmona-Ribeiro AM (2000) Supported bilayers on silica. J Colloid Interface Sci 226:299–307. https://doi.org/10.1006/jcis.2000.6824

    Article  CAS  Google Scholar 

  33. Moura SP, Carmona-Ribeiro AM (2003) Cationic bilayer fragments on silica at low ionic strength: competitive adsorption and colloid stability. Langmuir 19:6664–6667. https://doi.org/10.1021/la034334o

    Article  CAS  Google Scholar 

  34. Lincopan N, Santana MR, Faquim-Mauro E et al (2009) Silica-based cationic bilayers as immunoadjuvants. BMC Biotechnol 9:5. https://doi.org/10.1186/1472-6750-9-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ribeiro RT, Braga VHA, Carmona-Ribeiro AM (2017) Biomimetic cationic NPs based on silica: optimizing bilayer deposition from lipid films. Biomimetics 2:20. https://doi.org/10.3390/biomimetics2040020

    Article  CAS  PubMed Central  Google Scholar 

  36. Pereira EMA, Kosaka PM, Rosa H et al (2008) Hybrid materials from intermolecular associations between cationic lipid and polymers. J Phys Chem B 112:9301–9310. https://doi.org/10.1021/jp801297t

    Article  CAS  PubMed  Google Scholar 

  37. Vieira DB, Carmona-Ribeiro AM (2008) Cationic NPs for delivery of amphotericin B: preparation, characterization and activity in vitro. J Nanobiotechnol 6:6. https://doi.org/10.1186/1477-3155-6-6

    Article  CAS  Google Scholar 

  38. Melo LD, Mamizuka EM, Carmona-Ribeiro AM (2010) Antimicrobial particles from cationic lipid and polyelectrolytes. Langmuir 26:12300–12306. https://doi.org/10.1021/la101500s

    Article  CAS  PubMed  Google Scholar 

  39. Bohidar H, Dubin PL, Majhi PR et al (2005) Effects of protein-polyelectrolyte affinity and polyelectrolyte molecular weight on dynamic properties of bovine serum albumin-poly (diallyldimethylammonium chloride) coacervates. Biomacromolecules 6:1573–1585. https://doi.org/10.1021/bm049174p

    Article  CAS  PubMed  Google Scholar 

  40. Nascimento DB, Rapuano R, Lessa MM et al (1998) Counterion effects on properties of cationic vesicles. Langmuir 14:7387–7391. https://doi.org/10.1021/la980845c

    Article  CAS  Google Scholar 

  41. Schales O, Schales SS (1941) A simple and accurate method for the determination of chloride in biological fluids. J Biol Chem 140:879–884

    Article  CAS  Google Scholar 

  42. Carmona-Ribeiro AM (2012) Preparation and characterization of biomimetic nanoparticles for drug delivery. Methods Mol Biol 906:283–294. https://doi.org/10.1007/978-1-61779-953-2_22

    Article  CAS  PubMed  Google Scholar 

  43. Carmona-Ribeiro AM (2020) Biomimetic lipid polymer nanoparticles for drug delivery. Methods Mol Biol 2118:45–60. https://doi.org/10.1007/978-1-0716-0319-2_4

    Article  CAS  PubMed  Google Scholar 

  44. Grabowski E, Morrison I (1983) Particle size distribution from analysis of quasi-elastic light scattering data. In: Danecke B (ed) Measurement of suspended particles by quasi-elastic light scattering. Wiley-Interscience, New York, pp 199–236

    Google Scholar 

Download references

Acknowledgments

This work was supported by grant 2019/17685-2, São Paulo Research Foundation (FAPESP) and 302758/2019-4, Conselho Nacional de Pesquisa e Desenvolvimento Tecnológico (CNPq). Y.P.-B is the recipient of a PhD fellowship from CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Maria Carmona-Ribeiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Carmona-Ribeiro, A.M., Mathiazzi, B.I., Pérez-Betancourt, Y. (2022). Cationic Nanostructures as Adjuvants for Vaccines. In: Thomas, S. (eds) Vaccine Design. Methods in Molecular Biology, vol 2412. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1892-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1892-9_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1891-2

  • Online ISBN: 978-1-0716-1892-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics