Skip to main content

Mammalian Cell Culture as a Platform for Veterinary Vaccines

  • Protocol
  • First Online:
Vaccine Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2411))

  • 1539 Accesses

Abstract

For more than three decades, mammalian cells have been the host par excellence for the recombinant protein production for therapeutic purposes in humans. Due to the high cost of media and other supplies used for cell growth, initially this expression platform was only used for the production of proteins of pharmaceutical importance including antibodies. However, large biotechnological companies that used this platform continued research to improve its technical and economic feasibility. The main qualitative improvement was obtained when individual cells could be cultured in a liquid medium similar to bacteria and yeast cultures. Another important innovation for growing cells in suspension was the improvement in chemically defined media that does not contain macromolecules; they were cheaper to culture as any other microbial media. These scientific milestones have reduced the cost of mammalian cell culture and their use in obtaining proteins for veterinary use. The ease of working with mammalian cell culture has permitted the use of this expression platform to produce active pharmaceutic ingredients for veterinary vaccines. In this chapter, the protocol to obtain recombinant mammalian cell lines will be described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wells E, Robinson AS (2017) Cellular engineering for therapeutic protein production: product quality, host modification, and process improvement. Biotechnol J 12:1600105

    Article  Google Scholar 

  2. Shiloach J, Rinas U (2010) Bacterial cultivation for production of proteins and other biological products. In: Baltz RH, Davies JE, Demain AL (eds) Manual of industrial microbiology and biotechnology, 3rd edn. American Society of Microbiology, Washington, DC, pp 132–144

    Google Scholar 

  3. Berlec A, Štrukelj B (2013) Current state and recent advances in biopharmaceutical production in Escherichia coli, yeasts and mammalian cells. J Ind Microbiol Biotechnol 40:257–274

    Article  CAS  PubMed  Google Scholar 

  4. Magaña-Ortíz D, Fernández F, Loske AM, Gómez-Lim MA (2018) Extracellular expression in Aspergillus niger of an antibody fused to Leishmania sp. antigens. Curr Microbiol 75:40–48

    Article  PubMed  Google Scholar 

  5. Brondyk WH (2009) Selecting an appropriate method for expressing a recombinant protein. Methods Enzymol 463:131–147

    Article  CAS  PubMed  Google Scholar 

  6. Bandaranayake AD, Almo SC (2014) Recent advances in mammalian protein production. FEBS Lett 588:253–260

    Article  CAS  PubMed  Google Scholar 

  7. Hunter M, Yuan P, Vavilala D, Fox M (2019) Optimization of protein expression in mammalian cells. Curr Protoc Protein Sci 95:e77

    Article  PubMed  Google Scholar 

  8. Chen Q, Lai H (2015) Gene delivery into plant cells for recombinant protein production. BioMed Res Int 2015:932161

    PubMed  PubMed Central  Google Scholar 

  9. Redwan E-RM (2009) Animal-derived pharmaceutical proteins. J Immunoassay Immunochem 30:262–290

    Article  CAS  Google Scholar 

  10. Ozturk SS (2005) Cell culture technology-an overview. Biotechnol Bioprocess Ser 30:1

    Article  Google Scholar 

  11. Coco-Martin JM, Harmsen MM (2008) A review of therapeutic protein expression by mammalian cells. BioProcess Int 6:28

    CAS  Google Scholar 

  12. Zhu J (2012) Mammalian cell protein expression for biopharmaceutical production. Biotechnol Adv 30:1158–1170

    Article  CAS  PubMed  Google Scholar 

  13. Dalton AC, Barton WA (2014) Over-expression of secreted proteins from mammalian cell lines. Protein Sci 23:517–525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kim TK, Eberwine JH (2010) Mammalian cell transfection: the present and the future. Anal Bioanal Chem 397:3173–3178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kim JY, Kim Y-G, Lee GM (2012) CHO cells in biotechnology for production of recombinant proteins: current state and further potential. Appl Microbiol Biotechnol 93:917–930

    Article  CAS  PubMed  Google Scholar 

  16. Wurm FM (2004) Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol 22:1393–1398

    Article  CAS  PubMed  Google Scholar 

  17. Wurm FM, de Jesus M (2016) Manufacture of recombinant therapeutic proteins using Chinese Hamster ovary cells in large-scale bioreactors: history, methods, and perspectives. In: Morrow J, Liu C (eds) Biosimilars of monoclonal antibodies: a practical guide to manufacturing, preclinical, and clinical development. Wiley Blackwell, Chichester, West Sussex, pp 327–353

    Chapter  Google Scholar 

  18. Barnes D, Sato G (1980) Serum-free cell culture: a unifying approach. Cell 22:649–655

    Article  CAS  PubMed  Google Scholar 

  19. Masters JR (2000) Animal cell culture: a practical approach

    Google Scholar 

  20. Phelan MC (2006) Techniques for mammalian cell tissue culture. Wiley Online Library

    Google Scholar 

  21. Jayapal KP, Wlaschin KF, Hu W, Yap MG (2007) Recombinant protein therapeutics from CHO cells-20 years and counting. Chem Eng Prog 103:40

    CAS  Google Scholar 

  22. Hu W-S, Aunins JG (1997) Large-scale mammalian cell culture. Curr Opin Biotechnol 8:148–153

    Article  CAS  PubMed  Google Scholar 

  23. Feder J (2012) Large-scale mammalian cell culture. Elsevier, New York

    Google Scholar 

  24. Sinacore MS, Drapeau D, Adamson S (2000) Adaptation of mammalian cells to growth in serum-free media. Mol Biotechnol 15:249–257

    Article  CAS  PubMed  Google Scholar 

  25. Henry O, Durocher Y (2011) Enhanced glycoprotein production in HEK-293 cells expressing pyruvate carboxylase. Metab Eng 13:499–507

    Article  CAS  PubMed  Google Scholar 

  26. Durocher Y, Butler M (2009) Expression systems for therapeutic glycoprotein production. Curr Opin Biotechnol 20:700–707

    Article  CAS  PubMed  Google Scholar 

  27. Geserick C, Bonarius HP, Kongerslev L, Hauser H, Mueller PP (2000) Enhanced productivity during controlled proliferation of BHK cells in continuously perfused bioreactors. Biotechnol Bioeng 69:266–274

    Article  CAS  PubMed  Google Scholar 

  28. Barnes LM, Bentley CM, Dickson AJ (2000) Advances in animal cell recombinant protein production: GS-NS0 expression system. Cytotechnology 32:109–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shulman M, Wilde C, Köhler G (1978) A better cell line for making hybridomas secreting specific antibodies. Nature 276:269–270

    Article  CAS  PubMed  Google Scholar 

  30. Liu H, Liu X-M, Li S-C, Wu B-C, Ye L-L, Wang Q-W, Chen Z-L (2009) A high-yield and scaleable adenovirus vector production process based on high density perfusion culture of HEK 293 cells as suspended aggregates. J Biosci Bioeng 107:524–529

    Article  CAS  PubMed  Google Scholar 

  31. Tsao Y-S, Condon R, Schaefer E, Lio P, Liu Z (2001) Development and improvement of a serum-free suspension process for the production of recombinant adenoviral vectors using HEK293 cells. Cytotechnology 37:189–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Butler M (2005) Animal cell cultures: recent achievements and perspectives in the production of biopharmaceuticals. Appl Microbiol Biotechnol 68:283–291

    Article  CAS  PubMed  Google Scholar 

  33. Butler M, Meneses-Acosta A (2012) Recent advances in technology supporting biopharmaceutical production from mammalian cells. Appl Microbiol Biotechnol 96:885–894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Butler M (2015) Serum and protein free media. In: Animal cell culture. Springer, Cham, pp 223–236

    Chapter  Google Scholar 

  35. Birch JR, Racher AJ (2006) Antibody production. Adv Drug Deliv Rev 58:671–685

    Article  CAS  PubMed  Google Scholar 

  36. Hacker DL, Balasubramanian S (2016) Recombinant protein production from stable mammalian cell lines and pools. Curr Opin Struct Biol 38:129–136

    Article  CAS  PubMed  Google Scholar 

  37. Castan A, Schulz P, Wenger T, Fischer S (2018) Cell line development. In: Biopharmaceutical processing. Elsevier, pp 131–146

    Chapter  Google Scholar 

  38. Jostock T (2011) Expression of antibody in mammalian cells. In: Antibody expression and production. Springer, Dordrecht, pp 1–24

    Google Scholar 

  39. Rodrigues ME, Costa AR, Henriques M, Cunnah P, Melton DW, Azeredo J, Oliveira R (2013) Advances and drawbacks of the adaptation to serum-free culture of CHO-K1 cells for monoclonal antibody production. Appl Biochem Biotechnol 169:1279–1291

    Article  CAS  PubMed  Google Scholar 

  40. Hong JK, Lakshmanan M, Goudar C, Lee D-Y (2018) Towards next generation CHO cell line development and engineering by systems approaches. Curr Opin Chem Eng 22:1–10

    Article  Google Scholar 

  41. Boussif O, Lezoualc’h F, Zanta MA, Mergny MD, Scherman D, Demeneix B, Behr J-P (1995) A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci 92:7297–7301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Toledo JR, Prieto Y, Oramas N, Sánchez O (2009) Polyethylenimine-based transfection method as a simple and effective way to produce recombinant lentiviral vectors. Appl Biochem Biotechnol 157:538–544

    Article  CAS  PubMed  Google Scholar 

  43. Sonawane ND, Szoka FC, Verkman A (2003) Chloride accumulation and swelling in endosomes enhances DNA transfer by polyamine-DNA polyplexes. J Biol Chem 278:44826–44831

    Article  CAS  PubMed  Google Scholar 

  44. Kutner RH, Zhang X-Y, Reiser J (2009) Production, concentration and titration of pseudotyped HIV-1-based lentiviral vectors. Nat Protoc 4:495

    Article  CAS  PubMed  Google Scholar 

  45. Elegheert J, Behiels E, Bishop B, Scott S, Woolley RE, Griffiths SC, Byrne EF, Chang VT, Stuart DI, Jones EY (2018) Lentiviral transduction of mammalian cells for fast, scalable and high-level production of soluble and membrane proteins. Nat Protoc 13:2991–3017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gödecke N, Hauser H, Wirth D (2018) Stable expression by lentiviral transduction of cells. In: Recombinant protein expression in mammalian cells. Springer, New York, pp 43–55

    Chapter  Google Scholar 

  47. Ruiz NM, Alvarez G, Noa E (2003) Procedimientos para la obtención de reactivos biológicos de los estuches DAVIH Ag P24 y DAVIH Ac P24. VacciMonitor 12:16–23

    Google Scholar 

  48. Izquierdo M, Silva E, Díaz H, Lubián A, Nibot C, Tabares D (2000) Estudio comparativo de dos sistemas de captura de la proteína de 24 kD del virus de inmunodeficiencia humana tipo 1. Biotecnología Aplicada 17:102–104

    CAS  Google Scholar 

  49. Priola JJ, Calzadilla N, Baumann M, Borth N, Tate CG, Betenbaugh MJ (2016) High-throughput screening and selection of mammalian cells for enhanced protein production. Biotechnol J 11:853–865

    Article  CAS  PubMed  Google Scholar 

  50. Kuystermans D, Al-Rubeai M (2015) Mammalian cell line selection strategies for high-producers. In: Animal cell culture. Springer, Cham, pp 327–372

    Chapter  Google Scholar 

  51. Browne S, Al-Rubeai M (2009) Selection methods for high-producing mammalian cell lines. In: Cell line development. Springer, Dordrecht, pp 127–151

    Chapter  Google Scholar 

  52. Gallagher C, Kelly PS (2017) Selection of high-producing clones using FACS for CHO cell line development. In: Heterologous protein production in CHO cells. Springer, New York, pp 143–152

    Chapter  Google Scholar 

  53. Agrawal V, Slivac I, Perret S, Bisson L, St-Laurent G, Murad Y, Zhang J, Durocher Y (2012) Stable expression of chimeric heavy chain antibodies in CHO cells. In: Single domain antibodies. Springer, pp 287–303

    Chapter  Google Scholar 

  54. Swiech K, Picanço-Castro V (2018) Recombinant glycoprotein production: methods and protocols. Springer, New York, NY

    Google Scholar 

  55. Caron AL, Biaggio RT, Swiech K (2018) Strategies to suspension serum-free adaptation of mammalian cell lines for recombinant glycoprotein production. In: Recombinant glycoprotein production. Springer, New York, NY, pp 75–85

    Chapter  Google Scholar 

  56. Ozturk S, Kaseko G, Mahaworasilpa T, Coster H (2003) Adaptation of cell lines to serum-free culture medium. Hybrid Hybridomics 22:267–272

    Article  CAS  PubMed  Google Scholar 

  57. Hossler P, Khattak SF, Li ZJ (2009) Optimal and consistent protein glycosylation in mammalian cell culture. Glycobiology 19:936–949

    Article  CAS  PubMed  Google Scholar 

  58. Serrato JA, Hernández V, Estrada-Mondaca S, Palomares LA, Ramírez OT (2007) Differences in the glycosylation profile of a monoclonal antibody produced by hybridomas cultured in serum-supplemented, serum-free or chemically defined media. Biotechnol Appl Biochem 47:113–124

    Article  CAS  PubMed  Google Scholar 

  59. Costa AR, Withers J, Rodrigues ME, McLoughlin N, Henriques M, Oliveira R, Rudd PM, Azeredo J (2013) The impact of cell adaptation to serum-free conditions on the glycosylation profile of a monoclonal antibody produced by Chinese hamster ovary cells. New Biotechnol 30:563–572

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alina Rodríguez-Mallon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lao González, T., Ávalos Olivera, I., Rodríguez-Mallon, A. (2022). Mammalian Cell Culture as a Platform for Veterinary Vaccines. In: Thomas, S. (eds) Vaccine Design. Methods in Molecular Biology, vol 2411. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1888-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1888-2_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1887-5

  • Online ISBN: 978-1-0716-1888-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics