Skip to main content

Development of the Antileishmanial Vaccine

  • Protocol
  • First Online:
Vaccine Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2410))

  • 2550 Accesses

Abstract

Search for an efficacious antileishmanial vaccine has led to clinical trials of numerous vaccine candidates in the past few decades. As no promising candidate has emerged from these studies, novel vaccine modalities and vaccine assessment techniques are still emerging for antileishmanial vaccine development. Briefly, this chapter discusses: (a) history and timeline of antileishmanial vaccine development; (b) techniques utilized for developing whole-parasite and subunit-based antileishmanial vaccine formulations, and (c) immunogenicity and post-challenge protective efficacy assessment of vaccine candidates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Killick-Kendrick R (1990) The life-cycle of Leishmania in the sandfly with special reference to the form infective to the vertebrate host. Ann Parasitol Hum Comp 65:37–42

    Article  PubMed  Google Scholar 

  2. Guevara P, Pinto-Santíni D, Rojas A, Crisante G, Añez N, Ramirez JL (2001) Green fluorescent protein-tagged Leishmania in phlebotomine sand flies. J Med Entomol 38:39–43

    Article  CAS  PubMed  Google Scholar 

  3. World Health Organization (2020) Leishmaniasis. https://www.who.int/news-room/fact-sheets/detail/leishmaniasis. Accessed 10 Jun 2020

  4. Khamesipour A, Dowlati Y, Asilian A, Hashemi-Fesharki R, Javadi A, Noazin S et al (2005) Leishmanization: use of an old method for evaluation of candidate vaccines against leishmaniasis. Vaccine 23:3642–3648

    Article  CAS  PubMed  Google Scholar 

  5. Handman E (2001) Leishmaniasis: current status of vaccine development. Clin Microbiol Rev 14:229–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Noazin S, Modabber F, Khamesipour A, Smith PG, Moulton LH, Nasseri K et al (2008) First generation leishmaniasis vaccines: a review of field efficacy trials. Vaccine 26:6759–6767

    Article  CAS  PubMed  Google Scholar 

  7. De Luca PM, Mayrink W, Alves CR, Coutinho SG, Oliveira MP, Bertho AL et al (1999) Evaluation of the stability and immunogenicity of autoclaved and non autoclaved preparations of a vaccine against American tegumentary leishmaniasis. Vaccine 17:1179–1185

    Article  PubMed  Google Scholar 

  8. Amaral VF, Teva A, Oliveira-Neto MP, Silva AJ, Pereira MS, Cupolillo E et al (2002) Study of the safety, immunogenicity and efficacy of attenuated and killed Leishmania (Leishmania) major vaccines in a rhesus monkey (Macaca mulatta) model of the human disease. Mem Inst Oswaldo Cruz 97:1041–1048

    Article  CAS  PubMed  Google Scholar 

  9. Fiuza JA, Gannavaram S, Santiago Hda C, Selvapandiyan A, Souza DM, Passos LS et al (2015) Vaccination using live attenuated Leishmania donovani centrin deleted parasites induces protection in dogs against Leishmania infantum. Vaccine 33:280–288

    Article  CAS  PubMed  Google Scholar 

  10. Saravia NG, Escorcia B, Osorio Y, Valderrama L, Brooks D, Arteaga L et al (2006) Pathogenicity and protective immunogenicity of cysteine proteinase-deficient mutants of Leishmania mexicana in non-murine models. Vaccine 24:4247–4259

    Article  CAS  PubMed  Google Scholar 

  11. Dey R, Dagur PK, Selvapandiyan A, McCoy JP, Salotra P, Duncan R et al (2013) Live attenuated Leishmania donovani p27 gene knockout parasites are nonpathogenic and elicit long-term protective immunity in BALB/c mice. J Immunol 190:2138–2149

    Article  CAS  PubMed  Google Scholar 

  12. Palatnik de Sousa CB, Gomes EM, de Souza EP, dos Santos WR, de Macedo SR, de Medeiros LV et al (1996) The FML (Fucose mannose ligand) of Leishmania donovani. A new tool in diagnosis, prognosis, transfusional control and vaccination against human kala-azar. Rev Soc Bras Med Trop 29:153–163

    Article  CAS  PubMed  Google Scholar 

  13. Santos WR, Paraguai de Souza E, Palatnik M, Palatnik de Sousa CB (1999) Vaccination of Swiss albino mice against experimental visceral leishmaniasis with the FML antigen of Leishmania donovani. Vaccine 17:2554–2561

    Article  CAS  PubMed  Google Scholar 

  14. da Silva VO, Borja-Cabrera GP, Correia Pontes NN, de Souza EP, Luz KG, Palatnik M et al (2000) A phase III trial of efficacy of the FML-vaccine against canine kala-azar in an endemic area of Brazil (São Gonçalo do Amaranto, RN). Vaccine 19:1082–1092

    Article  PubMed  Google Scholar 

  15. Abdelhak S, Louzir H, Timm J, Blel L, Benlasfar Z, Lagranderie M et al (1995) Recombinant BCG expressing the leishmania surface antigen Gp63 induces protective immunity against Leishmania major infection in BALB/c mice. Microbiology 141:1585–1592

    Article  CAS  PubMed  Google Scholar 

  16. Bhowmick S, Ravindran R, Ali N (2008) gp63 in stable cationic liposomes confers sustained vaccine immunity to susceptible BALB/c mice infected with Leishmania Donovani. Infect Immun 76:1003–1015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jaffe CL, Rachamim N, Sarfstein R (1990) Characterization of two proteins from Leishmania Donovani and their use for vaccination against visceral Leishmaniasis. J Immunol 144:699–706

    CAS  PubMed  Google Scholar 

  18. Dole VS, Raj VS, Ghosh A, Madhubala R, Myler PJ, Stuart KD (2000) Immunization with recombinant LD1 antigens protects against experimental Leishmaniasis. Vaccine 19:423–430

    Article  CAS  PubMed  Google Scholar 

  19. Ghosh A, Zhang WW, Matlashewski G (2001) Immunization with A2 protein results in a mixed Th1/Th2 and a humoral response which protects mice against Leishmania Donovani infections. Vaccine 20:59–66

    Article  CAS  PubMed  Google Scholar 

  20. Skeiky YA, Coler RN, Brannon M, Stromberg E, Greeson K, Crane RT et al (2002) Protective efficacy of a tandemly linked, multi-subunit recombinant leishmanial vaccine (Leish-111f) formulated in MPL adjuvant. Vaccine 20:3292–3303

    Article  CAS  PubMed  Google Scholar 

  21. Coler RN, Goto Y, Bogatzki L, Raman V, Reed SG (2007) Leish-111f, a recombinant polyprotein vaccine that protects against visceral Leishmaniasis by elicitation of CD4+ T cells. Infect Immun 75:4648–4654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Morris RV, Shoemaker CB, David JR, Lanzaro GC, Titus RG (2001) Sandfly Maxadilan exacerbates infection with Leishmania major and vaccinating against it protects against L. Major infection. J Immunol 167:5226–5230

    Article  CAS  PubMed  Google Scholar 

  23. Gomes R, Oliveira F, Teixeira C, Meneses C, Gilmore DC, Elnaiem DE (2012) Immunity to sand fly salivary protein LJM11 modulates host response to vector-transmitted leishmania conferring ulcer-free protection. J Invest Dermatol 132:2735–2743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cunha JM, Abbehusen M, Suarez M, Valenzuela J, Teixeira CR, Brodskyn CI (2018) Immunization with LJM11 salivary protein protects against infection with Leishmania Braziliensis in the presence of Lutzomyia Longipalpis saliva. Acta Trop 177:164–170

    Article  CAS  PubMed  Google Scholar 

  25. Hobernik D, Bros M (2018) DNA vaccines—how far from clinical use? Int J Mol Sci 19:3605

    Article  PubMed Central  Google Scholar 

  26. Stäger S, Rafati S (2012) CD8(+) T cells in Leishmania infections: friends or foes? Front Immunol 3:5

    Article  PubMed  PubMed Central  Google Scholar 

  27. Gurunathan S, Sacks DL, Brown DR, Reiner SL, Charest H, Glaichenhaus N et al (1997) Vaccination with DNA encoding the immunodominant LACK parasite antigen confers protective immunity to mice infected with Leishmania major. J Exp Med 186:1137–1147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Melby PC, Yang J, Zhao W, Perez LE, Cheng J (2001) Leishmania Donovani p36(LACK) DNA vaccine is highly immunogenic but not protective against experimental visceral Leishmaniasis. Infect Immun 69:4719–4725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sukumaran B, Tewary P, Saxena S, Madhubala R (2003) Vaccination with DNA encoding ORFF antigen confers protective immunity in mice infected with Leishmania donovani. Vaccine 21:1292–1299

    Article  CAS  PubMed  Google Scholar 

  30. Tewary P, Saxena S, Madhubala R (2006) Co-administration of IL-12 DNA with rORFF antigen confers long-term protective immunity against experimental visceral Leishmaniasis. Vaccine 24:2409–2416

    Article  CAS  PubMed  Google Scholar 

  31. Basu R, Bhaumik S, Basu JM, Naskar K, De T, Roy S (2005) Kinetoplastid membrane protein-11 DNA vaccination induces complete protection against both pentavalent antimonial-sensitive and -resistant strains of Leishmania Donovani that correlates with inducible nitric oxide synthase activity and IL-4 generation: evidence for mixed Th1- and Th2-like responses in visceral Leishmaniasis. J Immunol 174:7160–7171

    Article  CAS  PubMed  Google Scholar 

  32. Bhaumik S, Basu R, Sen S, Naskar K, Roy S (2009) KMP-11 DNA immunization significantly protects against L. Donovani infection but requires exogenous IL-12 as an adjuvant for comparable protection against L. Major. Vaccine 27:1306–1316

    Article  CAS  PubMed  Google Scholar 

  33. Gamboa-León R, Paraguai de Souza E, Borja-Cabrera GP, Santos FN, Myashiro LM, Pinheiro RO et al (2006) Immunotherapy against visceral Leishmaniasis with the nucleoside hydrolase-DNA vaccine of Leishmania Donovani. Vaccine 24:4863–4873

    Article  PubMed  Google Scholar 

  34. Das S, Freier A, Boussoffara T, Das S, Oswald D, Losch FO et al (2014) Modular multiantigen T cell epitope-enriched DNA vaccine against human leishmaniasis. Sci Transl Med 6:234ra56

    Article  PubMed  Google Scholar 

  35. Dondji B, Pérez-Jimenez E, Goldsmith-Pestana K, Esteban M, McMahon-Pratt D (2005) Heterologous prime-boost vaccination with the LACK antigen protects against murine visceral leishmaniasis. Infect Immun 73:5286–5289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ramos I, Alonso A, Peris A, Marcen JM, Abengozar MA, Alcolea PJ et al (2009) Antibiotic resistance free plasmid DNA expressing LACK protein leads towards a protective Th1 response against Leishmania infantum infection. Vaccine 27:6695–6703

    Article  CAS  PubMed  Google Scholar 

  37. Rafati S, Zahedifard F, Nazgouee F (2006) Prime-boost vaccination using cysteine proteinases type I and II of Leishmania infantum confers protective immunity in murine visceral leishmaniasis. Vaccine 24:2169–2175

    Article  CAS  PubMed  Google Scholar 

  38. Zutshi S, Kumar S, Chauhan P, Bansode Y, Nair A, Roy S et al (2019) Anti-leishmanial vaccines: assumptions, approaches, and annulments. Vaccines (Basel) 7:156

    Article  CAS  Google Scholar 

  39. Dayakar A, Chandrasekaran S, Kuchipudi SV, Kalangi SK (2019) Cytokines: key determinants of resistance or disease progression in visceral Leishmaniasis: opportunities for novel diagnostics and immunotherapy. Front Immunol 10:670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Scott P, Novais FO (2016) Cutaneous leishmaniasis: immune responses in protection and pathogenesis. Nat Rev Immunol 16:581–592

    Article  CAS  PubMed  Google Scholar 

  41. Rodrigues V, Cordeiro-da-Silva A, Laforge M, Silvestre R, Estaquier J (2016) Regulation of immunity during visceral Leishmania infection. Parasit Vectors 9:118

    Article  PubMed  PubMed Central  Google Scholar 

  42. Potter H (2003) Transfection by electroporation. Curr Protoc Mol Biol. Chapter 9:Unit 9.3

    Google Scholar 

  43. Rao SJ, Meleppattu S, Pal JK (2016) A GCN2-like eIF2α kinase (LdeK1) of Leishmania donovani and its possible role in stress response. PLoS One 11:e0156032

    Article  PubMed  PubMed Central  Google Scholar 

  44. Zutshi S, Kumar S, Sarode A, Roy S, Sarkar A, Saha B (2020) Leishmania major adenylate kinase immunization offers partial protection to a susceptible host. Parasite Immunol 42:e12688

    Article  CAS  PubMed  Google Scholar 

  45. Zhu YN, Yang YF, Ono S, Zhong XG, Feng YH, Ren YX et al (2006) Differential expression of inducible nitric oxide synthase and IL-12 between peritoneal and splenic macrophages stimulated with LPS plus IFN-gamma is associated with the activation of extracellular signal-related kinase. Int Immunol 18:981–990

    Article  CAS  PubMed  Google Scholar 

  46. Wang C, Yu X, Cao Q, Wang Y, Zheng G, Tan TK (2013) Characterization of murine macrophages from bone marrow, spleen and peritoneum. BMC Immunol 14:6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Vorderwülbecke S, Cleverley S, Weinberger S, Wiesner A (2005) Protein quantification by the SELDI-TOF-MS–based ProteinChip® system. Nat Methods 2:393–395

    Article  Google Scholar 

  48. Hecht ES, Scigelova M, Eliuk S, Makarov A (2019) Fundamentals and advances of Orbitrap mass spectrometry. In: Encyclopedia of analytical chemistry, pp 1–40

    Google Scholar 

  49. Jha MK, Sarode AY, Bodhale N, Mukherjee D, Pandey SP, Srivastava N et al (2020) Development and characterization of an Avirulent Leishmania major strain. J Immunol 204:2734–2753

    Article  CAS  PubMed  Google Scholar 

  50. Leng SX, McElhaney JE, Walston JD, Xie D, Fedarko NS, Kuchel GA (2008) ELISA and multiplex technologies for cytokine measurement in inflammation and aging research. J Gerontol A Biol Sci Med Sci 63:879–884

    Article  PubMed  Google Scholar 

  51. Klintevall K, Näslund K, Svedlund G, Hajdu L, Linde N, Klingeborn B (1991) Evaluation of an indirect ELISA for the detection of antibodies to bovine leukaemia virus in milk and serum. J Virol Methods 33:319–333

    Article  CAS  PubMed  Google Scholar 

  52. Schrier S, Hill A, Plana D, Lauffenburger DA (2016) Synergistic communication between CD4+ T cells and monocytes impacts the cytokine environment. Sci Rep 6:34942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kumar S, Zutshi S, Patidar A, Bodhale N, Roy S, Sarkar A et al (2020) LmjMAPK10 offers protection against Leishmania donovani infection. Parasite Immunol 42:e12687

    Article  CAS  PubMed  Google Scholar 

  54. McLaughlin BE, Baumgarth N, Bigos M, Roederer M, De Rosa SC, Altman JD et al (2008) Nine-color flow cytometry for accurate measurement of T cell subsets and cytokine responses. Part II: Panel performance across different instrument platforms. Cytometry A 73:411–420

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kumar, S., Zutshi, S., Jha, M.K., Chauhan, P., Saha, B. (2022). Development of the Antileishmanial Vaccine. In: Thomas, S. (eds) Vaccine Design. Methods in Molecular Biology, vol 2410. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1884-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1884-4_23

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1883-7

  • Online ISBN: 978-1-0716-1884-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics