Skip to main content

Construction of Novel Live Genetically Modified BCG Vaccine Candidates Using Recombineering Tools

  • Protocol
  • First Online:
Vaccine Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2410))

Abstract

One of the strategies for the construction of live vaccine candidates is through the generation of genetically defined isogenic strains, containing single or multiple mutations in target-specific genes generated by allelic exchange. This approach allows to produce rational attenuation of or, alternatively, sequence-specific modifications to produce variants of antigenic molecules or change their expression levels. Genetic tools amenable for their use in mycobacterial strains have allowed the identification and validation of potential targets for the diagnosis, prevention, and treatment of tuberculosis. However, the genetic manipulation of Mycobacterium tuberculosis and other slow-growing strains such as Mycobacterium bovis BCG has been delayed by various factors related to their physiology and cell wall characteristics. Notwithstanding the foregoing, the high frequency of illegitimate recombination and the availability of few antibiotic selection markers limit the feasibility of genetic manipulation of mycobacterial strains. This chapter describes a protocol for the generation of defined mutants using recombination tools in an inducible recombination system driven by mycobacterial Che9c phage RecET proteins, originally developed in Dr. Graham Hatfull’s group, combined with linearized recombination substrates containing flanking sequences of a locus of interest and an antibiotic resistance gene. These recombination substrates contain sites for removal of antibiotics selection markers. This system allows to make marked and unmarked mutations by homologous recombination in a single step as a result of a double crossover between the homologous regions on the genome and the allelic exchange substrate. In addition, this genetic tool used for engineering mycobacterial genomes performs with lower rates of illegitimate recombination and take on average less time to create knock-out (KO) mutant compared with other techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Borgers K, Vandewalle K, Festjens N, Callewaert N (2019) A guide to mycobacterium mutagenesis. FEBS J 286:3757–3774. https://doi.org/10.1111/febs.15041

    Article  CAS  PubMed  Google Scholar 

  2. Kana BD, Mizrahi V (2004) Molecular genetics of Mycobacterium tuberculosis in relation to the discovery of novel drugs and vaccines. Tuberculosis (Edinb) 84(1–2):63–75. https://doi.org/10.1016/j.tube.2003.08.006

    Article  Google Scholar 

  3. Alderton H, Smith D (2001) Safety in the laboratory. In: Parish T, Stoker NG (eds) Methods in molecular medicine: Mycobacterium tuberculosis protocols, 2nd edn. Human Press, London, pp 367–383

    Google Scholar 

  4. Jacobs WR Jr (2014) Gene transfer in Mycobacterium tuberculosis: shuttle phasmids to enlightenment. Microbiol Spectr 2(2):10. https://doi.org/10.1128/microbiolspec.MGM2-0037-2013

    Article  CAS  Google Scholar 

  5. Goude R, Parish T (2009) Electroporation of mycobacteria. Methods Mol Biol 465:203–215. https://doi.org/10.1007/978-1-59745-207-6_13

    Article  CAS  PubMed  Google Scholar 

  6. van Kessel JC, Hatfull GF (2008) Efficient point mutagenesis in mycobacteria using single-stranded DNA recombineering: characterization of antimycobacterial drug targets. Mol Microbiol 67(5):1094–1107

    Article  PubMed  Google Scholar 

  7. Aldovini A, Husson RN, Young RA (1993) The uraA locus and homologous recombination in Mycobacterium bovis BCG. J Bacteriol 175:7282–7289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hatfull GF (1996) The molecular genetics of Mycobacterium tuberculosis. Curr Top Microbiol Immunol 215:29–47

    CAS  PubMed  Google Scholar 

  9. Kalpana GV, Bloom BR, Jacobs WR Jr (1991) Insertional mutagenesis and illegitimate recombination in mycobacteria. Proc Natl Acad Sci U S A 88(12):5433–5437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. McFadden J (1996) Recombination in mycobacteria. Mol Microbiol 21:205–211

    Article  CAS  PubMed  Google Scholar 

  11. Muniyappa K, Ganesh N, Guhan N, Singh P, Manjunath GP, Datta S et al (2004) Homologous recombination in micobacteria. Curr Sci 86(1):141–148

    CAS  Google Scholar 

  12. Muttucumaru DGN, Parish T (2004) The molecular biology of recombination in mycobacteria: what do we know and how can we use it? Curr Issues Mol Biol 6:145–158

    CAS  PubMed  Google Scholar 

  13. Jacobs WR, Tuckman M, Bloom BR (1987) Introduction of foreign DNA into mycobacteria using a shuttle phasmid. Nature 327:532–535

    Article  CAS  PubMed  Google Scholar 

  14. Datey A, Subburaj J, Gopalan J, Chakravortty D (2017) Mechanism of transformation in micobacteria using a novel shockwave assisted technique driven by in-situ generated oxyhydrogen. Sci Rep 7:8645

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wards BJ, Collins DM (1996) Electroporation at elevated temperatures substantially improves transformation efficiency of slow-growing mycobacteria. FEMS Microbiol Lett 145:101–105

    Article  CAS  PubMed  Google Scholar 

  16. Hinds J, Mahenthiralingam E, Kempsell KE, Duncan K, Stokes RW, Parish T et al (1999) Enhanced gene replacement in mycobacteria. Microbiology 145:519–527

    Article  CAS  PubMed  Google Scholar 

  17. van Kessel JC (2008) Recombineering in mycobacteria using mycobacteriophage proteins. Doctoral Dissertation, University of Pittsburgh. http://d-scholarship.pitt.edu/8939/1/vanKessel_etd_2008.pdf

  18. Clark-Curtiss JE, Haydel SE (2003) Molecular genetics of Mycobacterium tuberculosis pathogenesis. Annu Rev Microbiol 57:517–549

    Article  CAS  PubMed  Google Scholar 

  19. van Kessel JC, Hatfull GF (2008) Mycobacterial recombineering. In: Davis G, Kayser KJ (eds) Methods in molecular biology 435: chromosomal mutagenesis. Humana Press, Totowa, NJ, pp 203–216

    Chapter  Google Scholar 

  20. Yan M-Y, Yan H-Q, Ren G-X, Zhao J-P, Guo X-P, Sun Y-C (2017) CRISPR-Cas12a–assisted recombineering in bacteria. Appl Environ Microbiol 83:1–13. AEM.00947-17

    Google Scholar 

  21. Sun B, Yang J, Yang S, Ye RD, Chen D, Jiang Y (2018) A CRISPR-Cpf1-assisted non-homologous end joining genome editing system of Mycobacterium smegmatis. Biotechnol J 13:1700588

    Article  Google Scholar 

  22. Murphy KC, Nelson SJ, Nambi S, Papavinasasundaram K, Baer CE, Sassetti CM (2018) ORBIT: a new paradigm for genetic engineering of mycobacterial chromosomes. MBio 9:e01467–e01418

    Article  PubMed  PubMed Central  Google Scholar 

  23. Brooks K, Clark AJ (1967) Behavior of lambda bacteriophage in a recombination deficient strain of Escherichia coli. J Virol 1:283–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Muyrers JP, Zhang Y, Buchholz F, Stewart AF (2000) RecE/RecT and Redalpha/Redbeta initiate double-stranded break repair by specifically interacting with their respective partners. Genes Dev 14:1971–1982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sawitzke JA, Thomason LC, Costantino N, Bubunenko M, Datta S, Court DL (2007) Recombineering: in vivo genetic engineering in E. coli, S. enterica, and beyond. Methods Enzymol 421:171–199

    Article  CAS  PubMed  Google Scholar 

  26. Court DL, Sawitzke JA, Thomason LC (2002) Genetic engineering using homologous recombination. Annu Rev Genet 36:361–388

    Article  CAS  PubMed  Google Scholar 

  27. Gottesman MM, Gottesman ME, Gottesman S, Gellert M (1974) Characterization of bacteriophage lambda reverse as an Escherichia coli phage carrying a unique set of host-derived recombination functions. J Mol Biol 88:471–487

    Article  CAS  PubMed  Google Scholar 

  28. van Kessel JC, Hatfull GF (2007) Recombineering in Mycobacterium tuberculosis. Nat Methods 4(2):147–152

    Article  PubMed  Google Scholar 

  29. Li Z, Karakousis G, Chiu SK, Reddy G, Radding CM (1998) The Beta protein of phage lambda promotes strand exchange. J Mol Biol 276:733–744

    Article  CAS  PubMed  Google Scholar 

  30. Murphy KC, Campellone KG, Poteete AR (2000) PCR-mediated gene replacement in Escherichia coli. Gene 246:321–330

    Article  CAS  PubMed  Google Scholar 

  31. Yu D, Ellis HM, Lee EC, Jenkins NA, Copeland NG, Court DL (2000) An efficient recombination system for chromosome engineering in Escherichia coli. Proc Natl Acad Sci U S A 97(11):5978–5983. https://doi.org/10.1073/pnas.100127597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ellis HM, Yu D, DiTizio T, Court DL (2001) High efficiency mutagenesis, repair, and engineering of chromosomal DNA using single-stranded oligonucleotides. Proc Natl Acad Sci U S A 98:6742–6746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bardarov S, Bardarov S, Pavelka MS, Sambandamurthy V, Larsen M, Tufariello JA, Chan J, Hatfull G, Jacobs WR (2002) Specialized transduction: an efficient method for generating marked and unmarked targeted gene disruptions in Mycobacterium tuberculosis, M. bovis BCG and M. smegmatis. Microbiology 10:3007–3017

    Article  Google Scholar 

  34. Mao XJ, Yan MY, Zhu H, Guo X, Sun YC (2016) Efficient and simple generation of multiple unmarked gene deletions in Mycobacterium smegmatis. Sci Rep 6:22922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Parish T, Mahenthiralingam E, Draper P, Davis EO, Colston MJ (1997) Regulation of the inducible acetamidase gene of Mycobacterium smegmatis. Microbiology 143:2267–2276. https://doi.org/10.1099/00221287-143-7-2267

    Article  CAS  PubMed  Google Scholar 

  36. Lee SH, Cheung M, Irani V, Carroll JD, Inamine JM, Howe WR, Maslow JN (2002) Optimization of electroporation conditions for Mycobacterium avium. Tuberculosis (Edinb) 82:167–174

    Article  Google Scholar 

Download references

Acknowledgements

M. J. A. S. received a Ph.D. fellowship from CONACYT (Number 745841). The authors are grateful to Dr. Graham Hatfull and Dr. Yi-Cheng Sun for their kind donation of plasmids pJV53 and pUC-Hyg, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Alberto Flores-Valdez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Flores-Valdez, M.A., Aceves-Sánchez, M.d.J. (2022). Construction of Novel Live Genetically Modified BCG Vaccine Candidates Using Recombineering Tools. In: Thomas, S. (eds) Vaccine Design. Methods in Molecular Biology, vol 2410. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1884-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1884-4_19

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1883-7

  • Online ISBN: 978-1-0716-1884-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics