Skip to main content

Introduction of a Hexalysine (6 K) Tag Can Protect from N-Terminal Cleavage and Increase Yield of Recombinant Proteins Expressed in the Periplasm of E. coli

  • Protocol
  • First Online:
Insoluble Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2406))

Abstract

Recombinant expression of proteins in the periplasm of E. coli is frequently used for proteins containing disulfide bonds that are essential for protein folding and activity, as the cytosol of E. coli constitutes a reducing environment. The periplasm in contrast is an oxidative environment which supports proper protein folding. However, yields can be limited compared with cytoplasmic expression, and protocols must be adjusted to avoid overloading the periplasmic transportation machinery. Another less-appreciated issue with periplasmic expression is the potential generation of unwanted N-terminal cleavage products, a persistent issue which we encountered when expressing the disulfide bond containing extracellular regions of several Helicobacter pylori adhesins (BabA, BabB, BabC, and LabA) in the periplasm of E. coli XL10 GOLD, a strain traditionally not used for proteins expression. Here, we describe how introducing a C-terminal hexa-lysine (6 K) tag enhanced solubility and protected BabA from N-terminal proteolytic degradation (BabA), enabling crystallization and subsequent X-ray structural analysis. However. the same strategy had no advantageous effect for LabA, which using this protocol could be retrieved from the periplasm in relatively high yields (20–40 mg/L).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Thornton JM (1981) Disulphide bridges in globular proteins. J Mol Biol 151:261–287

    Article  CAS  PubMed  Google Scholar 

  2. Lobstein J, Emrich CA, Jeans C et al (2012) SHuffle, a novel Escherichia coli protein expression strain capable of correctly folding disulfide bonded proteins in its cytoplasm. Microb Cell Fact 11:56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gaciarz A, Khatri NK, Velez-Suberbie ML et al (2017) Efficient soluble expression of disulfide bonded proteins in the cytoplasm of Escherichia coli in fed-batch fermentations on chemically defined minimal media. Microb Cell Fact 16:108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Berkmen M (2012) Production of disulfide-bonded proteins in Escherichia coli. Protein Expr Purif 82:240–251

    Article  CAS  PubMed  Google Scholar 

  5. de Marco A (2009) Strategies for successful recombinant expression of disulfide bond-dependent proteins in Escherichia coli. Microb Cell Fact 8:26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Merdanovic M, Clausen T, Kaiser M et al (2011) Protein quality control in the bacterial periplasm. Annu Rev Microbiol 65:149–168

    Article  CAS  PubMed  Google Scholar 

  7. Kadokura H, Tian H, Zander T et al (2004) Snapshots of DsbA in action: detection of proteins in the process of oxidative folding. Science 303:534–537

    Article  CAS  PubMed  Google Scholar 

  8. Berkmen M, Boyd D, Beckwith J (2005) The nonconsecutive disulfide bond of Escherichia coli phytase (AppA) renders it dependent on the protein-disulfide isomerase, DsbC. J Biol Chem 280:11387–11394

    Article  CAS  PubMed  Google Scholar 

  9. Messens J, Collet JF, Van Belle K et al (2007) The oxidase DsbA folds a protein with a nonconsecutive disulfide. J Biol Chem 282:31302–31307

    Article  CAS  PubMed  Google Scholar 

  10. Lei SP, Lin HC, Wang SS et al (1987) Characterization of the Erwinia carotovora pelB gene and its product pectate lyase. J Bacteriol 169:4379–4383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Singh P, Sharma L, Kulothungan SR et al (2013) Effect of signal peptide on stability and folding of Escherichia coli Thioredoxin. PLoS One 8:e63442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Auclair SM, Bhanu MK, Kendall DA (2012) Signal peptidase I: cleaving the way to mature proteins. Protein Sci 21:13–25

    Article  CAS  PubMed  Google Scholar 

  13. Graham LL, Beveridge TJ, Nanninga N (1991) Periplasmic space and the concept of the periplasm. Trends Biochem Sci 16:328–329

    Article  CAS  PubMed  Google Scholar 

  14. Schlegel S, Rujas E, Ytterberg AJ et al (2013) Optimizing heterologous protein production in the periplasm of E. coli by regulating gene expression levels. Microb Cell Fact 12:24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Paraskevopoulou V, Falcone F (2018) Polyionic tags as enhancers of protein solubility in recombinant protein expression. Microorganisms 6:47

    Article  CAS  PubMed Central  Google Scholar 

  16. Hage N, Renshaw JG, Winkler GS et al (2015) Improved expression and purification of the Helicobacter pylori adhesin BabA through the incorporation of a hexa-lysine tag. Protein Expr Purif 106:25–30

    Article  CAS  PubMed  Google Scholar 

  17. Paraskevopoulou V, Artiaga VG, Rowlinson R et al (2019) Introduction of a C-terminal hexa-lysine tag increases thermal stability of the LacDiNac binding adhesin (LabA) exodomain from Helicobacter pylori. Protein Expr Purif 163:105446

    Article  CAS  PubMed  Google Scholar 

  18. Hage N, Howard T, Phillips C et al (2015) Molecular basis of blood group antigen recognition by the Helicobacter pylori adhesin BabA. Sci Adv 1(e1500315):14

    Google Scholar 

  19. Moonens K, Gideonsson P, Subedi S et al (2016) Structural insights into polymorphic ABO glycan binding by Helicobacter pylori. Cell Host Microbe 19:55–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bertani G (1951) Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J Bacteriol 62:293–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Miller JH, Miller JB (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  22. Lennox ES (1955) Transduction of linked genetic characters of the host by bacteriophage P1. Virology 1:190–206

    Article  CAS  PubMed  Google Scholar 

  23. Gibson DG, Young L, Chuang RY et al (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6:343–345

    Article  CAS  PubMed  Google Scholar 

  24. Yallapragada VVB, Gowda U, Wong D et al (2019) ODX: a fitness tracker-based device for continuous bacterial growth monitoring. Anal Chem 91:12329–12335

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Work leading to the protocols described in this chapter was funded by the EPSRC (Grants EP/I01375X/1 and EP/L01646X) and AstraZeneca R&D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franco H. Falcone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Paraskevopoulou, V., Alissa, M., Hage, N., Falcone, F.H. (2022). Introduction of a Hexalysine (6 K) Tag Can Protect from N-Terminal Cleavage and Increase Yield of Recombinant Proteins Expressed in the Periplasm of E. coli. In: Garcia Fruitós, E., Arís Giralt, A. (eds) Insoluble Proteins. Methods in Molecular Biology, vol 2406. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1859-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1859-2_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1858-5

  • Online ISBN: 978-1-0716-1859-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics