Skip to main content

A3D 2.0 Update for the Prediction and Optimization of Protein Solubility

  • Protocol
  • First Online:
Insoluble Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2406))

Abstract

Protein aggregation propensity is a property imprinted in protein sequences and structures, being associated with the onset of human diseases and limiting the implementation of protein-based biotherapies. Computational approaches stand as cost-effective alternatives for reducing protein aggregation and increasing protein solubility. AGGRESCAN 3D (A3D) is a structure-based predictor of aggregation that takes into account the conformational context of a protein, aiming to identify aggregation-prone regions exposed in protein surfaces. Here we inspect the updated 2.0 version of the algorithm, which extends the application of A3D to previously inaccessible proteins and incorporates new modules to assist protein redesign. Among these features, the new server includes stability calculations and the possibility to optimize protein solubility using an experimentally validated computational pipeline. Finally, we employ defined examples to navigate the A3D RESTful service, a routine to handle extensive protein collections. Altogether, this chapter is conceived to train and assist A3D non-experts in the study of aggregation-prone regions and protein solubility redesign.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Castillo V et al (2011) Prediction of the aggregation propensity of proteins from the primary sequence: aggregation properties of proteomes. Biotechnol J 6(6):674–685

    Article  CAS  PubMed  Google Scholar 

  2. Pastore A, Temussi PA (2012) The two faces of Janus: functional interactions and protein aggregation. Curr Opin Struct Biol 22(1):30–37

    Article  CAS  PubMed  Google Scholar 

  3. Langenberg T et al (2020) Thermodynamic and evolutionary coupling between the native and amyloid state of globular proteins. Cell Rep 31(2):107512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pechmann S et al (2009) Physicochemical principles that regulate the competition between functional and dysfunctional association of proteins. Proc Natl Acad Sci U S A 106(25):10159–10164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Monsellier E, Chiti F (2007) Prevention of amyloid-like aggregation as a driving force of protein evolution. EMBO Rep 8(8):737–742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Balchin D et al (2016) In vivo aspects of protein folding and quality control. Science 353(6294):aac4354

    Article  PubMed  Google Scholar 

  7. Chiti F, Dobson CM (2017) Protein Misfolding, amyloid formation, and human disease: a summary of Progress over the last decade. Annu Rev Biochem 86:27–68

    Article  CAS  PubMed  Google Scholar 

  8. Cromwell ME et al (2006) Protein aggregation and bioprocessing. AAPS J 8(3):E572–E579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ventura S et al (2004) Short amino acid stretches can mediate amyloid formation in globular proteins: the Src homology 3 (SH3) case. Proc Natl Acad Sci U S A 101(19):7258–7263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Esteras-Chopo A et al (2005) The amyloid stretch hypothesis: recruiting proteins toward the dark side. Proc Natl Acad Sci U S A 102(46):16672–16677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Santos J et al (2020) Computational prediction and redesign of aberrant protein oligomerization. Prog Mol Biol Transl Sci 169:43–83

    Article  CAS  PubMed  Google Scholar 

  12. Pallares I, Ventura S (2019) Advances in the prediction of protein aggregation propensity. Curr Med Chem 26(21):3911–3920

    Article  CAS  PubMed  Google Scholar 

  13. Redler RL et al (2014) Computational approaches to understanding protein aggregation in neurodegeneration. J Mol Cell Biol 6(2):104–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zambrano R et al (2015) AGGRESCAN3D (A3D): server for prediction of aggregation properties of protein structures. Nucleic Acids Res 43(W1):W306–W313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. de Groot NS et al (2006) Mutagenesis of the central hydrophobic cluster in Abeta42 Alzheimer's peptide. Side-chain properties correlate with aggregation propensities. FEBS J 273(3):658–668

    Article  PubMed  Google Scholar 

  16. Conchillo-Sole O et al (2007) AGGRESCAN: a server for the prediction and evaluation of "hot spots" of aggregation in polypeptides. BMC Bioinformatics 8:65

    Article  PubMed  PubMed Central  Google Scholar 

  17. Patel P et al (2017) Combined in silico approaches for the identification of novel inhibitors of human islet amyloid polypeptide (hIAPP) fibrillation. J Mol Graph Model 77:295–310

    Article  CAS  PubMed  Google Scholar 

  18. Zerovnik E (2017) Putative alternative functions of human stefin B (cystatin B): binding to amyloid-beta, membranes, and copper. J Mol Recognit 30(1)

    Google Scholar 

  19. Bhandare VV, Ramaswamy A (2018) The proteinopathy of D169G and K263E mutants at the RNA recognition motif (RRM) domain of tar DNA-binding protein (tdp43) causing neurological disorders: a computational study. J Biomol Struct Dyn 36(4):1075–1093

    Article  CAS  PubMed  Google Scholar 

  20. Kuriata A et al (2019) Aggrescan3D (A3D) 2.0: prediction and engineering of protein solubility. Nucleic Acids Res 47(W1):W300–WW07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kurcinski M et al (2019) CABS-flex standalone: a simulation environment for fast modeling of protein flexibility. Bioinformatics 35(4):694–695

    Article  CAS  PubMed  Google Scholar 

  22. Pujols J et al (2018) AGGRESCAN3D: toward the prediction of the aggregation propensities of protein structures. Methods Mol Biol 1762:427–443

    Article  CAS  PubMed  Google Scholar 

  23. Goldenzweig A, Fleishman SJ (2018) Principles of protein stability and their application in computational design. Annu Rev Biochem 87:105–129

    Article  CAS  PubMed  Google Scholar 

  24. Linding R et al (2004) A comparative study of the relationship between protein structure and beta-aggregation in globular and intrinsically disordered proteins. J Mol Biol 342(1):345–353

    Article  CAS  PubMed  Google Scholar 

  25. Ganesan A et al (2016) Structural hot spots for the solubility of globular proteins. Nat Commun 7:10816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Houben B et al (2020) Autonomous aggregation suppression by acidic residues explains why chaperones favour basic residues. EMBO J 39:e102864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Schymkowitz J et al (2005) The FoldX web server: an online force field. Nucleic Acids Res 33(Web Server issue):W382–W388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Buss O et al (2018) FoldX as protein engineering tool: better than random based approaches? Comput Struct Biotechnol J 16:25–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Oldfield CJ, Dunker AK (2014) Intrinsically disordered proteins and intrinsically disordered protein regions. Annu Rev Biochem 83:553–584

    Article  CAS  PubMed  Google Scholar 

  30. Tokuriki N, Tawfik DS (2009) Protein dynamism and evolvability. Science 324(5924):203–207

    Article  CAS  PubMed  Google Scholar 

  31. Chiti F, Dobson CM (2009) Amyloid formation by globular proteins under native conditions. Nat Chem Biol 5(1):15–22

    Article  CAS  PubMed  Google Scholar 

  32. Eakin CM et al (2006) A native to amyloidogenic transition regulated by a backbone trigger. Nat Struct Mol Biol 13(3):202–208

    Article  CAS  PubMed  Google Scholar 

  33. Roberts CJ (2014) Therapeutic protein aggregation: mechanisms, design, and control. Trends Biotechnol 32(7):372–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Roberts CJ (2014) Protein aggregation and its impact on product quality. Curr Opin Biotechnol 30:211–217

    Article  CAS  PubMed  Google Scholar 

  35. Lowe D et al (2011) Aggregation, stability, and formulation of human antibody therapeutics. Adv Protein Chem Struct Biol 84:41–61

    Article  CAS  PubMed  Google Scholar 

  36. Ellis RJ (2001) Macromolecular crowding: obvious but underappreciated. Trends Biochem Sci 26(10):597–604

    Article  CAS  PubMed  Google Scholar 

  37. Rosenberg AS (2006) Effects of protein aggregates: an immunologic perspective. AAPS J 8(3):E501–E507

    Article  PubMed  PubMed Central  Google Scholar 

  38. Moussa EM et al (2016) Immunogenicity of therapeutic protein aggregates. J Pharm Sci 105(2):417–430

    Article  CAS  PubMed  Google Scholar 

  39. Dudgeon K et al (2012) General strategy for the generation of human antibody variable domains with increased aggregation resistance. Proc Natl Acad Sci U S A 109(27):10879–10884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pallares I, Ventura S (2016) Understanding and predicting protein misfolding and aggregation: insights from proteomics. Proteomics 16(19):2570–2581

    Article  CAS  PubMed  Google Scholar 

  41. Ormo M et al (1996) Crystal structure of the Aequorea victoria green fluorescent protein. Science 273(5280):1392–1395

    Article  CAS  PubMed  Google Scholar 

  42. Tsien RY (1998) The green fluorescent protein. Annu Rev Biochem 67:509–544

    Article  CAS  PubMed  Google Scholar 

  43. Romei MG, Boxer SG (2019) Split green fluorescent proteins: scope, limitations, and outlook. Annu Rev Biophys 48:19–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pedelacq JD et al (2006) Engineering and characterization of a superfolder green fluorescent protein. Nat Biotechnol 24(1):79–88

    Article  CAS  PubMed  Google Scholar 

  45. Gil-Garcia M et al (2018) Combining structural aggregation propensity and stability predictions to redesign protein solubility. Mol Pharm 15(9):3846–3859

    Article  CAS  PubMed  Google Scholar 

  46. Beerten J et al (2012) Aggregation prone regions and gatekeeping residues in protein sequences. Curr Top Med Chem 12(22):2470–2478

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by the Spanish Ministry of Economy and Competitiveness BIO2016-78310-R to S.V and by ICREA, ICREA-Academia 2015 to S.V. J. S. and J.P. were supported by the Spanish Ministry of Science and Innovation via a doctoral grant (FPU17/01157 and FPU14/07161). Conflict of Interest: none declared

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvador Ventura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Pujols, J., Iglesias, V., Santos, J., Kuriata, A., Kmiecik, S., Ventura, S. (2022). A3D 2.0 Update for the Prediction and Optimization of Protein Solubility. In: Garcia Fruitós, E., Arís Giralt, A. (eds) Insoluble Proteins. Methods in Molecular Biology, vol 2406. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1859-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1859-2_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1858-5

  • Online ISBN: 978-1-0716-1859-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics